IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1008458.html
   My bibliography  Save this article

Microbial phenotypic heterogeneity in response to a metabolic toxin: Continuous, dynamically shifting distribution of formaldehyde tolerance in Methylobacterium extorquens populations

Author

Listed:
  • Jessica A Lee
  • Siavash Riazi
  • Shahla Nemati
  • Jannell V Bazurto
  • Andreas E Vasdekis
  • Benjamin J Ridenhour
  • Christopher H Remien
  • Christopher J Marx

Abstract

While microbiologists often make the simplifying assumption that genotype determines phenotype in a given environment, it is becoming increasingly apparent that phenotypic heterogeneity (in which one genotype generates multiple phenotypes simultaneously even in a uniform environment) is common in many microbial populations. The importance of phenotypic heterogeneity has been demonstrated in a number of model systems involving binary phenotypic states (e.g., growth/non-growth); however, less is known about systems involving phenotype distributions that are continuous across an environmental gradient, and how those distributions change when the environment changes. Here, we describe a novel instance of phenotypic diversity in tolerance to a metabolic toxin within wild-type populations of Methylobacterium extorquens, a ubiquitous phyllosphere methylotroph capable of growing on the methanol periodically released from plant leaves. The first intermediate in methanol metabolism is formaldehyde, a potent cellular toxin that is lethal in high concentrations. We have found that at moderate concentrations, formaldehyde tolerance in M. extorquens is heterogeneous, with a cell's minimum tolerance level ranging between 0 mM and 8 mM. Tolerant cells have a distinct gene expression profile from non-tolerant cells. This form of heterogeneity is continuous in terms of threshold (the formaldehyde concentration where growth ceases), yet binary in outcome (at a given formaldehyde concentration, cells either grow normally or die, with no intermediate phenotype), and it is not associated with any detectable genetic mutations. Moreover, tolerance distributions within the population are dynamic, changing over time in response to growth conditions. We characterized this phenomenon using bulk liquid culture experiments, colony growth tracking, flow cytometry, single-cell time-lapse microscopy, transcriptomics, and genome resequencing. Finally, we used mathematical modeling to better understand the processes by which cells change phenotype, and found evidence for both stochastic, bidirectional phenotypic diversification and responsive, directed phenotypic shifts, depending on the growth substrate and the presence of toxin.Author summary: Scientists tend to appreciate microbes for their simplicity and predictability: a population of genetically identical cells inhabiting a uniform environment is expected to behave in a uniform way. However, counter-examples to this assumption are frequently being discovered, forcing a re-examination of the relationship between genotype and phenotype. In most such examples, bacterial cells are found to split into two discrete populations, for instance growing and non-growing. Here, we report the discovery of a novel example of microbial phenotypic heterogeneity in which cells are distributed along a gradient of phenotypes, ranging from low to high tolerance of a toxic chemical. Furthermore, we demonstrate that the distribution of phenotypes changes in different growth conditions, and we use mathematical modeling to show that cells may change their phenotype either randomly or in a particular direction in response to the environment. Our work expands our understanding of how a bacterial cell's genome, family history, and environment all contribute to its behavior, with implications for the diverse situations in which we care to understand the growth of any single-celled populations.

Suggested Citation

  • Jessica A Lee & Siavash Riazi & Shahla Nemati & Jannell V Bazurto & Andreas E Vasdekis & Benjamin J Ridenhour & Christopher H Remien & Christopher J Marx, 2019. "Microbial phenotypic heterogeneity in response to a metabolic toxin: Continuous, dynamically shifting distribution of formaldehyde tolerance in Methylobacterium extorquens populations," PLOS Genetics, Public Library of Science, vol. 15(11), pages 1-38, November.
  • Handle: RePEc:plo:pgen00:1008458
    DOI: 10.1371/journal.pgen.1008458
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008458
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1008458&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1008458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sydney M. Shaffer & Margaret C. Dunagin & Stefan R. Torborg & Eduardo A. Torre & Benjamin Emert & Clemens Krepler & Marilda Beqiri & Katrin Sproesser & Patricia A. Brafford & Min Xiao & Elliott Eggan , 2017. "Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance," Nature, Nature, vol. 546(7658), pages 431-435, June.
    2. Soetaert, Karline & Petzoldt, Thomas & Setzer, R. Woodrow, 2010. "Solving Differential Equations in R: Package deSolve," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i09).
    3. Ofer Fridman & Amir Goldberg & Irine Ronin & Noam Shoresh & Nathalie Q. Balaban, 2014. "Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations," Nature, Nature, vol. 513(7518), pages 418-421, September.
    4. Daniel J. Kiviet & Philippe Nghe & Noreen Walker & Sarah Boulineau & Vanda Sunderlikova & Sander J. Tans, 2014. "Stochasticity of metabolism and growth at the single-cell level," Nature, Nature, vol. 514(7522), pages 376-379, October.
    5. A. E. Vasdekis & H. Alanazi & A. M. Silverman & C. J. Williams & A. J. Canul & J. B. Cliff & A. C. Dohnalkova & G. Stephanopoulos, 2019. "Eliciting the impacts of cellular noise on metabolic trade-offs by quantitative mass imaging," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. Avigdor Eldar & Michael B. Elowitz, 2010. "Functional roles for noise in genetic circuits," Nature, Nature, vol. 467(7312), pages 167-173, September.
    7. Hubertus J. E. Beaumont & Jenna Gallie & Christian Kost & Gayle C. Ferguson & Paul B. Rainey, 2009. "Experimental evolution of bet hedging," Nature, Nature, vol. 462(7269), pages 90-93, November.
    8. John R. S. Newman & Sina Ghaemmaghami & Jan Ihmels & David K. Breslow & Matthew Noble & Joseph L. DeRisi & Jonathan S. Weissman, 2006. "Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise," Nature, Nature, vol. 441(7095), pages 840-846, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leighton T Izu & Tamás Bányász & Ye Chen-Izu, 2015. "Optimizing Population Variability to Maximize Benefit," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-17, December.
    2. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    3. Lee, Julian, 2023. "Poisson distributions in stochastic dynamics of gene expression: What events do they count?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. Singh, Abhyudai & Vahdat, Zahra & Xu, Zikai, 2019. "Time-triggered stochastic hybrid systems with two timer-dependent resets," OSF Preprints u8fzg, Center for Open Science.
    5. Ming Ni & Antoine L Decrulle & Fanette Fontaine & Alice Demarez & Francois Taddei & Ariel B Lindner, 2012. "Pre-Disposition and Epigenetics Govern Variation in Bacterial Survival upon Stress," PLOS Genetics, Public Library of Science, vol. 8(12), pages 1-11, December.
    6. Vera Bettenworth & Simon Vliet & Bartosz Turkowyd & Annika Bamberger & Heiko Wendt & Matthew McIntosh & Wieland Steinchen & Ulrike Endesfelder & Anke Becker, 2022. "Frequency modulation of a bacterial quorum sensing response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Abhyudai Singh & Mohammad Soltani, 2013. "Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    8. Niraj Kumar & Abhyudai Singh & Rahul V Kulkarni, 2015. "Transcriptional Bursting in Gene Expression: Analytical Results for General Stochastic Models," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-22, October.
    9. Shuangyu Bi & Manika Kargeti & Remy Colin & Niklas Farke & Hannes Link & Victor Sourjik, 2023. "Dynamic fluctuations in a bacterial metabolic network," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    12. Fatima-Zahra Jaouimaa & Daniel Dempsey & Suzanne Van Osch & Stephen Kinsella & Kevin Burke & Jason Wyse & James Sweeney, 2021. "An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland with framework for evaluating health intervention cost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-25, December.
    13. Belém Barbosa & José Ramón Saura & Dag Bennett, 2024. "How do entrepreneurs perform digital marketing across the customer journey? A review and discussion of the main uses," The Journal of Technology Transfer, Springer, vol. 49(1), pages 69-103, February.
    14. Lucy Ham & Megan A. Coomer & Kaan Öcal & Ramon Grima & Michael P. H. Stumpf, 2024. "A stochastic vs deterministic perspective on the timing of cellular events," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Andrew W. Lo & H. Allen Orr & Ruixun Zhang, 2018. "The growth of relative wealth and the Kelly criterion," Journal of Bioeconomics, Springer, vol. 20(1), pages 49-67, April.
    16. Louis-François Handfield & Yolanda T Chong & Jibril Simmons & Brenda J Andrews & Alan M Moses, 2013. "Unsupervised Clustering of Subcellular Protein Expression Patterns in High-Throughput Microscopy Images Reveals Protein Complexes and Functional Relationships between Proteins," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-19, June.
    17. Overstall, Antony M. & Woods, David C. & Martin, Kieran J., 2019. "Bayesian prediction for physical models with application to the optimization of the synthesis of pharmaceutical products using chemical kinetics," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 126-142.
    18. Serrouya, R. & Dickie, M. & DeMars, C. & Wittmann, M.J. & Boutin, S., 2020. "Predicting the effects of restoring linear features on woodland caribou populations," Ecological Modelling, Elsevier, vol. 416(C).
    19. Stuart Aitken & Marie-Cécile Robert & Ross D Alexander & Igor Goryanin & Edouard Bertrand & Jean D Beggs, 2010. "Processivity and Coupling in Messenger RNA Transcription," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-12, January.
    20. Georg Fritz & Judith A Megerle & Sonja A Westermayer & Delia Brick & Ralf Heermann & Kirsten Jung & Joachim O Rädler & Ulrich Gerland, 2014. "Single Cell Kinetics of Phenotypic Switching in the Arabinose Utilization System of E. coli," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1008458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.