IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0136251.html
   My bibliography  Save this article

Do Cost Functions for Tracking Error Generalize across Tasks with Different Noise Levels?

Author

Listed:
  • Jonathon Sensinger
  • Adrian Aleman-Zapata
  • Kevin Englehart

Abstract

Control of human-machine interfaces are well modeled by computational control models, which take into account the behavioral decisions people make in estimating task dynamics and state for a given control law. This control law is optimized according to a cost function, which for the sake of mathematical tractability is typically represented as a series of quadratic terms. Recent studies have found that people actually use cost functions for reaching tasks that are slightly different than a quadratic function, but it is unclear which of several cost functions best explain human behavior and if these cost functions generalize across tasks of similar nature but different scale. In this study, we used an inverse-decision-theory technique to reconstruct the cost function from empirical data collected on 24 able-bodied subjects controlling a myoelectric interface. Compared with previous studies, this experimental paradigm involved a different control source (myoelectric control, which has inherently large multiplicative noise), a different control interface (control signal was mapped to cursor velocity), and a different task (the tracking position dynamically moved on the screen throughout each trial). Several cost functions, including a linear-quadratic; an inverted Gaussian, and a power function, accurately described the behavior of subjects throughout this experiment better than a quadratic cost function or other explored candidate cost functions (p

Suggested Citation

  • Jonathon Sensinger & Adrian Aleman-Zapata & Kevin Englehart, 2015. "Do Cost Functions for Tracking Error Generalize across Tasks with Different Noise Levels?," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-13, August.
  • Handle: RePEc:plo:pone00:0136251
    DOI: 10.1371/journal.pone.0136251
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136251
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0136251&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0136251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2014. "On the Origins of Suboptimality in Human Probabilistic Inference," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua G A Cashaback & Heather R McGregor & Ayman Mohatarem & Paul L Gribble, 2017. "Dissociating error-based and reinforcement-based loss functions during sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrije Marković & Jan Gläscher & Peter Bossaerts & John O’Doherty & Stefan J Kiebel, 2015. "Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-34, October.
    2. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    3. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    5. Elina Stengård & Ronald van den Berg, 2019. "Imperfect Bayesian inference in visual perception," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.
    6. Luigi Acerbi & Kalpana Dokka & Dora E Angelaki & Wei Ji Ma, 2018. "Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-38, July.
    7. James R H Cooke & Arjan C ter Horst & Robert J van Beers & W Pieter Medendorp, 2017. "Effect of depth information on multiple-object tracking in three dimensions: A probabilistic perspective," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-18, July.
    8. Joshua G A Cashaback & Christopher K Lao & Dimitrios J Palidis & Susan K Coltman & Heather R McGregor & Paul L Gribble, 2019. "The gradient of the reinforcement landscape influences sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-27, March.
    9. Richard F Murray & Khushbu Patel & Alan Yee, 2015. "Posterior Probability Matching and Human Perceptual Decision Making," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-16, June.
    10. Joshua G A Cashaback & Heather R McGregor & Ayman Mohatarem & Paul L Gribble, 2017. "Dissociating error-based and reinforcement-based loss functions during sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-28, July.
    11. Elyse H Norton & Luigi Acerbi & Wei Ji Ma & Michael S Landy, 2019. "Human online adaptation to changes in prior probability," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-26, July.
    12. Jingwei Sun & Jian Li & Hang Zhang, 2019. "Human representation of multimodal distributions as clusters of samples," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-29, May.
    13. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2017. "Target Uncertainty Mediates Sensorimotor Error Correction," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.
    14. William T Adler & Wei Ji Ma, 2018. "Comparing Bayesian and non-Bayesian accounts of human confidence reports," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-34, November.
    15. Bonan Zhao & Christopher G. Lucas & Neil R. Bramley, 2024. "A model of conceptual bootstrapping in human cognition," Nature Human Behaviour, Nature, vol. 8(1), pages 125-136, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0136251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.