IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006465.html
   My bibliography  Save this article

Imperfect Bayesian inference in visual perception

Author

Listed:
  • Elina Stengård
  • Ronald van den Berg

Abstract

Optimal Bayesian models have been highly successful in describing human performance on perceptual decision-making tasks, such as cue combination and visual search. However, recent studies have argued that these models are often overly flexible and therefore lack explanatory power. Moreover, there are indications that neural computation is inherently imprecise, which makes it implausible that humans would perform optimally on any non-trivial task. Here, we reconsider human performance on a visual-search task by using an approach that constrains model flexibility and tests for computational imperfections. Subjects performed a target detection task in which targets and distractors were tilted ellipses with orientations drawn from Gaussian distributions with different means. We varied the amount of overlap between these distributions to create multiple levels of external uncertainty. We also varied the level of sensory noise, by testing subjects under both short and unlimited display times. On average, empirical performance—measured as d’—fell 18.1% short of optimal performance. We found no evidence that the magnitude of this suboptimality was affected by the level of internal or external uncertainty. The data were well accounted for by a Bayesian model with imperfections in its computations. This “imperfect Bayesian” model convincingly outperformed the “flawless Bayesian” model as well as all ten heuristic models that we tested. These results suggest that perception is founded on Bayesian principles, but with suboptimalities in the implementation of these principles. The view of perception as imperfect Bayesian inference can provide a middle ground between traditional Bayesian and anti-Bayesian views.Author summary: The main task of perceptual systems is to make truthful inferences about the environment. The sensory input to these systems is often astonishingly imprecise, which makes human perception prone to error. Nevertheless, numerous studies have reported that humans often perform as accurately as is possible given these sensory imprecisions. This suggests that the brain makes optimal use of the sensory input and computes without error. The validity of this claim has recently been questioned for two reasons. First, it has been argued that a lot of the evidence for optimality comes from studies that used overly flexible models. Second, optimality in human perception is implausible due to limitations inherent to neural systems. In this study, we reconsider optimality in a standard visual perception task by devising a research method that addresses both concerns. In contrast to previous studies, we find clear indications of suboptimalities. Our data are best explained by a model that is based on the optimal decision strategy, but with imperfections in its execution.

Suggested Citation

  • Elina Stengård & Ronald van den Berg, 2019. "Imperfect Bayesian inference in visual perception," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.
  • Handle: RePEc:plo:pcbi00:1006465
    DOI: 10.1371/journal.pcbi.1006465
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006465
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006465&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manisha Bhardwaj & Ronald van den Berg & Wei Ji Ma & Krešimir Josić, 2016. "Do People Take Stimulus Correlations into Account in Visual Search?," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-16, March.
    2. Vickie Li & Santiago Herce Castañón & Joshua A Solomon & Hildward Vandormael & Christopher Summerfield, 2017. "Robust averaging protects decisions from noise in neural computations," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-19, August.
    3. William T Adler & Wei Ji Ma, 2018. "Comparing Bayesian and non-Bayesian accounts of human confidence reports," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-34, November.
    4. B. O. Koopman, 1956. "The Theory of Search. II. Target Detection," Operations Research, INFORMS, vol. 4(5), pages 503-531, October.
    5. Marc O. Ernst & Martin S. Banks, 2002. "Humans integrate visual and haptic information in a statistically optimal fashion," Nature, Nature, vol. 415(6870), pages 429-433, January.
    6. Shaiyan Keshvari & Ronald van den Berg & Wei Ji Ma, 2012. "Probabilistic Computation in Human Perception under Variability in Encoding Precision," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-9, June.
    7. Peter W Battaglia & Daniel Kersten & Paul R Schrater, 2011. "How Haptic Size Sensations Improve Distance Perception," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-13, June.
    8. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2014. "On the Origins of Suboptimality in Human Probabilistic Inference," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jannes Jegminat & Maya A Jastrzębowska & Matthew V Pachai & Michael H Herzog & Jean-Pascal Pfister, 2020. "Bayesian regression explains how human participants handle parameter uncertainty," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    2. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    4. Jannes Jegminat & Maya A Jastrzębowska & Matthew V Pachai & Michael H Herzog & Jean-Pascal Pfister, 2020. "Bayesian regression explains how human participants handle parameter uncertainty," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    5. Luigi Acerbi & Kalpana Dokka & Dora E Angelaki & Wei Ji Ma, 2018. "Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-38, July.
    6. James R H Cooke & Arjan C ter Horst & Robert J van Beers & W Pieter Medendorp, 2017. "Effect of depth information on multiple-object tracking in three dimensions: A probabilistic perspective," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-18, July.
    7. Jingwei Sun & Jian Li & Hang Zhang, 2019. "Human representation of multimodal distributions as clusters of samples," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-29, May.
    8. William T Adler & Wei Ji Ma, 2018. "Comparing Bayesian and non-Bayesian accounts of human confidence reports," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-34, November.
    9. Luigi Acerbi & Daniel M Wolpert & Sethu Vijayakumar, 2012. "Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-19, November.
    10. Garrec, Tristan, 2019. "Continuous patrolling and hiding games," European Journal of Operational Research, Elsevier, vol. 277(1), pages 42-51.
    11. Simon Weiler & Vahid Rahmati & Marcel Isstas & Johann Wutke & Andreas Walter Stark & Christian Franke & Jürgen Graf & Christian Geis & Otto W. Witte & Mark Hübener & Jürgen Bolz & Troy W. Margrie & Kn, 2024. "A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    12. Catarina Mendonça & Pietro Mandelli & Ville Pulkki, 2016. "Modeling the Perception of Audiovisual Distance: Bayesian Causal Inference and Other Models," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-18, December.
    13. Jacques Pesnot Lerousseau & Cesare V. Parise & Marc O. Ernst & Virginie Wassenhove, 2022. "Multisensory correlation computations in the human brain identified by a time-resolved encoding model," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Dimitrije Marković & Jan Gläscher & Peter Bossaerts & John O’Doherty & Stefan J Kiebel, 2015. "Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-34, October.
    15. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    16. Marine Hainguerlot & Thibault Gajdos & Jean-Christophe Vergnaud & Vincent de Gardelle, 2023. "How Overconfidence Bias Influences Suboptimality in Perceptual Decision Making," PSE-Ecole d'économie de Paris (Postprint) hal-04197403, HAL.
    17. Patricia Besson & Christophe Bourdin & Lionel Bringoux, 2011. "A Comprehensive Model of Audiovisual Perception: Both Percept and Temporal Dynamics," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-11, August.
    18. Anthony Renard & Evan R. Harrell & Brice Bathellier, 2022. "Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Wendy J Adams, 2016. "The Development of Audio-Visual Integration for Temporal Judgements," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-17, April.
    20. Ryan Webb & Paul W. Glimcher & Kenway Louie, 2021. "The Normalization of Consumer Valuations: Context-Dependent Preferences from Neurobiological Constraints," Management Science, INFORMS, vol. 67(1), pages 93-125, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.