IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0120621.html
   My bibliography  Save this article

Modeling Forest Fire Occurrences Using Count-Data Mixed Models in Qiannan Autonomous Prefecture of Guizhou Province in China

Author

Listed:
  • Yundan Xiao
  • Xiongqing Zhang
  • Ping Ji

Abstract

Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence.

Suggested Citation

  • Yundan Xiao & Xiongqing Zhang & Ping Ji, 2015. "Modeling Forest Fire Occurrences Using Count-Data Mixed Models in Qiannan Autonomous Prefecture of Guizhou Province in China," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-12, March.
  • Handle: RePEc:plo:pone00:0120621
    DOI: 10.1371/journal.pone.0120621
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120621
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0120621&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0120621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    2. Daniel B. Hall, 2000. "Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study," Biometrics, The International Biometric Society, vol. 56(4), pages 1030-1039, December.
    3. Gurmu, Shiferaw, 1997. "Semi-Parametric Estimation of Hurdle Regression Models with an Application to Medicaid Utilization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 225-243, May-June.
    4. Shonkwiler, John Scott & Shaw, W. Douglass, 1996. "Hurdle Count-Data Models In Recreation Demand Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 21(2), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Volition Tlhalitshi Montshiwa & Ntebogang Dinah Moroke, 2017. "The Effect of Sample Size on the Efficiency of Count Data Models: Application to Marriage Data," Journal of Economics and Behavioral Studies, AMH International, vol. 9(3), pages 6-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bae, S. & Famoye, F. & Wulu, J.T. & Bartolucci, A.A. & Singh, K.P., 2005. "A rich family of generalized Poisson regression models with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(1), pages 4-11.
    2. Bilgic, Abdulbaki & Florkowski, Wojciech J., 2003. "Application Of Hurdle Negative Binomial Count Data Model To Demand For Black Bass Fishing In The Southeastern United States," 2003 Annual Meeting, February 1-5, 2003, Mobile, Alabama 35079, Southern Agricultural Economics Association.
    3. Fabio Sigrist & Werner A. Stahel, 2010. "Using The Censored Gamma Distribution for Modeling Fractional Response Variables with an Application to Loss Given Default," Papers 1011.1796, arXiv.org, revised May 2012.
    4. Boncinelli, Fabio & Bartolini, Fabio & Casini, Leonardo, 2018. "Structural factors of labour allocation for farm diversification activities," Land Use Policy, Elsevier, vol. 71(C), pages 204-212.
    5. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    6. Niklas Elert, 2014. "What determines entry? Evidence from Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 55-92, August.
    7. Gurmu, Shiferaw & Rilstone, Paul & Stern, Steven, 1998. "Semiparametric estimation of count regression models1," Journal of Econometrics, Elsevier, vol. 88(1), pages 123-150, November.
    8. Abbas Moghimbeigi & Mohammed Reza Eshraghian & Kazem Mohammad & Brian Mcardle, 2008. "Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1193-1202.
    9. Harald Oberhofer & Michael Pfaffermayr, 2014. "Two-Part Models for Fractional Responses Defined as Ratios of Integers," Econometrics, MDPI, vol. 2(3), pages 1-22, September.
    10. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    11. Stefano Mainardi, 2003. "Testing convergence in life expectancies: count regression models on panel data," Prague Economic Papers, Prague University of Economics and Business, vol. 2003(4), pages 350-370.
    12. Sarker, Rakhal & Surry, Yves R., 2003. "The Fast Decay Process In Recreational Demand Activities And The Use Of Alternative Count Data Models," Working Papers 34147, University of Guelph, Department of Food, Agricultural and Resource Economics.
    13. Jiang, Yuan & House, Lisa A., 2017. "Comparison of the Performance of Count Data Models under Different Zero-Inflation Scenarios Using Simulation Studies," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258342, Agricultural and Applied Economics Association.
    14. Livio Finos & Fortunato Pesarin, 2020. "On zero-inflated permutation testing and some related problems," Statistical Papers, Springer, vol. 61(5), pages 2157-2174, October.
    15. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    16. Pruitt, J. Ross & Tilley, Daniel S., 2008. "Location Patterns of Confectionery Manufacturers in a Post NAFTA Environment," 2008 Annual Meeting, February 2-6, 2008, Dallas, Texas 6802, Southern Agricultural Economics Association.
    17. Jiang, Yuan & House, Lisa & Tejera, Christian & Percival, Susan S., 2015. "Consumption of Mushrooms: A double-hurdle Approach," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196902, Southern Agricultural Economics Association.
    18. Cristian Roner & Claudia Di Caterina & Davide Ferrari, 2021. "Exponential Tilting for Zero-inflated Interval Regression with Applications to Cyber Security Survey Data," BEMPS - Bozen Economics & Management Paper Series BEMPS85, Faculty of Economics and Management at the Free University of Bozen.
    19. Teresa Bago d'Uva, 2006. "Latent class models for utilisation of health care," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 329-343, April.
    20. Camila Pareja Yale & Hugo Tsugunobu Yoshida Yoshizaki & Luiz Paulo Fávero, 2022. "A New Zero-Inflated Negative Binomial Multilevel Model for Forecasting the Demand of Disaster Relief Supplies in the State of Sao Paulo, Brazil," Mathematics, MDPI, vol. 10(22), pages 1-11, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0120621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.