IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1011.1796.html
   My bibliography  Save this paper

Using The Censored Gamma Distribution for Modeling Fractional Response Variables with an Application to Loss Given Default

Author

Listed:
  • Fabio Sigrist
  • Werner A. Stahel

Abstract

Regression models for limited continuous dependent variables having a non-negligible probability of attaining exactly their limits are presented. The models differ in the number of parameters and in their flexibility. Fractional data being a special case of limited dependent data, the models also apply to variables that are a fraction or a proportion. It is shown how to fit these models and they are applied to a Loss Given Default dataset from insurance to which they provide a good fit.

Suggested Citation

  • Fabio Sigrist & Werner A. Stahel, 2010. "Using The Censored Gamma Distribution for Modeling Fractional Response Variables with an Application to Loss Given Default," Papers 1011.1796, arXiv.org, revised May 2012.
  • Handle: RePEc:arx:papers:1011.1796
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1011.1796
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G.S. Maddala & Forrest D. Nelson, 1975. "Specification Errors in Limited Dependent Variable Models," NBER Working Papers 0096, National Bureau of Economic Research, Inc.
    2. Gurmu, Shiferaw, 1997. "Semi-Parametric Estimation of Hurdle Regression Models with an Application to Medicaid Utilization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 225-243, May-June.
    3. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    4. Shonkwiler, John Scott & Shaw, W. Douglass, 1996. "Hurdle Count-Data Models In Recreation Demand Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 21(2), pages 1-10, December.
    5. Chen, Songnian & Khan, Shakeeb, 2001. "Semiparametric Estimation Of A Partially Linear Censored Regression Model," Econometric Theory, Cambridge University Press, vol. 17(3), pages 567-590, June.
    6. Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
    7. Arabmazar, Abbas & Schmidt, Peter, 1982. "An Investigation of the Robustness of the Tobit Estimator to Non-Normality," Econometrica, Econometric Society, vol. 50(4), pages 1055-1063, July.
    8. Gurmu, Shiferaw & Trivedi, Pravin K, 1996. "Excess Zeros in Count Models for Recreational Trips," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 469-477, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn, 2013. "A zero-adjusted gamma model for mortgage loan loss given default," International Journal of Forecasting, Elsevier, vol. 29(4), pages 548-562.
    2. Natalia Nehrebecka, 2019. "Bank loans recovery rate in commercial banks: A case study of non-financial corporations," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(1), pages 139-172.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilgic, Abdulbaki & Florkowski, Wojciech J., 2003. "Application Of Hurdle Negative Binomial Count Data Model To Demand For Black Bass Fishing In The Southeastern United States," 2003 Annual Meeting, February 1-5, 2003, Mobile, Alabama 35079, Southern Agricultural Economics Association.
    2. Boncinelli, Fabio & Bartolini, Fabio & Casini, Leonardo, 2018. "Structural factors of labour allocation for farm diversification activities," Land Use Policy, Elsevier, vol. 71(C), pages 204-212.
    3. Stefano Mainardi, 2003. "Testing convergence in life expectancies: count regression models on panel data," Prague Economic Papers, Prague University of Economics and Business, vol. 2003(4), pages 350-370.
    4. Meisner, Craig & Wang, Hua & Laplante, Benoit, 2006. "Welfare measurement bias in household and on-site surveying of water-based recreation : an application to Lake Sevan, Armenia," Policy Research Working Paper Series 3932, The World Bank.
    5. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Robust Estimation of Wage Dispersion with Censored Data: An Application to Occupational Earnings Risk and Risk Attitudes," De Economist, Springer, vol. 168(4), pages 519-540, December.
    6. Michael D. Creel & Montserrat Farell, 2001. "Likelihood-Based Approaches to Modeling Demand for Medical Care," UFAE and IAE Working Papers 498.01, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    7. Bae, S. & Famoye, F. & Wulu, J.T. & Bartolucci, A.A. & Singh, K.P., 2005. "A rich family of generalized Poisson regression models with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(1), pages 4-11.
    8. Michael Creel & Montserrat Farell, 2005. "Modeling Usage of Medical Care Services: The Medical Expenditure Panel Survey Data, 1996-2000," UFAE and IAE Working Papers 646.05, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    9. R. Martínez-Espiñeira, 2007. "‘Adopt a Hypothetical Pup’: A Count Data Approach to the Valuation of Wildlife," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(2), pages 335-360, June.
    10. J.-M. Daussin-Benichou & A. Mauroux, 2014. "Turning the heat up. How sensitive are households to fiscal incentives on energy efficiency investments?," Documents de Travail de l'Insee - INSEE Working Papers g2014-06, Institut National de la Statistique et des Etudes Economiques.
    11. Yundan Xiao & Xiongqing Zhang & Ping Ji, 2015. "Modeling Forest Fire Occurrences Using Count-Data Mixed Models in Qiannan Autonomous Prefecture of Guizhou Province in China," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-12, March.
    12. Georgios Papadopoulos, 2013. "Immigration Status and Victimization: Evidence from the British Crime Survey," University of East Anglia Applied and Financial Economics Working Paper Series 042, School of Economics, University of East Anglia, Norwich, UK..
    13. Bilgic, Abdulbaki & Florkowski, Wojciech J., 2003. "Truncated-At-Zero Count Data Models With Partial Observability: An Application To The Freshwater Fishing Demand In The Southeastern U.S," 2003 Annual Meeting, February 1-5, 2003, Mobile, Alabama 35185, Southern Agricultural Economics Association.
    14. Gurmu, Shiferaw, 1998. "Generalized hurdle count data regression models," Economics Letters, Elsevier, vol. 58(3), pages 263-268, March.
    15. Paul Clist, 2009. "25 Years of Aid Allocation Practice: Comparing Donors and Eras," Discussion Papers 09/11, University of Nottingham, CREDIT.
    16. Gurmu, Shiferaw & Rilstone, Paul & Stern, Steven, 1998. "Semiparametric estimation of count regression models1," Journal of Econometrics, Elsevier, vol. 88(1), pages 123-150, November.
    17. David Aristei & Luca Pieroni, 2008. "A double-hurdle approach to modelling tobacco consumption in Italy," Applied Economics, Taylor & Francis Journals, vol. 40(19), pages 2463-2476.
    18. J. M. C. Santos Silva, 2001. "A score test for non-nested hypotheses with applications to discrete data models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 577-597.
    19. Silvia Ferrini & Carlo Fezzi, 2012. "Generalized Additive Models for Nonmarket Valuation via Revealed or Stated Preference Methods," Land Economics, University of Wisconsin Press, vol. 88(4), pages 782-802.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1011.1796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.