Author
Listed:
- Darren J Kriticos
- Sarah Brunel
Abstract
Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world’s worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional management.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0120054. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.