IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0115532.html
   My bibliography  Save this article

Predicting the Phenotypic Values of Physiological Traits Using SNP Genotype and Gene Expression Data in Mice

Author

Listed:
  • Yu Takagi
  • Hirokazu Matsuda
  • Yukio Taniguchi
  • Hiroaki Iwaisaki

Abstract

Predicting phenotypes using genome-wide genetic variation and gene expression data is useful in several fields, such as human biology and medicine, as well as in crop and livestock breeding. However, for phenotype prediction using gene expression data for mammals, studies remain scarce, as the available data on gene expression profiling are currently limited. By integrating a few sources of relevant data that are available in mice, this study investigated the accuracy of phenotype prediction for several physiological traits. Gene expression data from two tissues as well as single nucleotide polymorphisms (SNPs) were used. For the studied traits, the variance of the effects of the expression levels was more likely to differ among the genes than were the effects of SNPs. For the glucose concentration, the total cholesterol amount, and the total tidal volume, the accuracy by cross validation tended to be higher when the gene expression data rather than the SNP genotype data were used, and a statistically significant increase in the accuracy was obtained when the gene expression data from the liver were used alone or jointly with the SNP genotype data. For these traits, there were no additional gains in accuracy from using the gene expression data of both the liver and lung compared to that of individual use. The accuracy of prediction using genes that were selected differently was examined; the use of genes with a higher tissue specificity tended to result in an accuracy that was similar to or greater than that associated with the use of all of the available genes for traits such as the glucose concentration and total cholesterol amount. Although relatively few animals were evaluated, the current results suggest that gene expression levels could be used as explanatory variables. However, further studies are essential to confirm our findings using additional animal samples.

Suggested Citation

  • Yu Takagi & Hirokazu Matsuda & Yukio Taniguchi & Hiroaki Iwaisaki, 2014. "Predicting the Phenotypic Values of Physiological Traits Using SNP Genotype and Gene Expression Data in Mice," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-17, December.
  • Handle: RePEc:plo:pone00:0115532
    DOI: 10.1371/journal.pone.0115532
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115532
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0115532&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0115532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Madhuchhanda Bhattacharjee & Mikko J Sillanpää, 2011. "A Bayesian Mixed Regression Based Prediction of Quantitative Traits from Molecular Marker and Gene Expression Data," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-13, November.
    2. van Wieringen, Wessel N. & Kun, David & Hampel, Regina & Boulesteix, Anne-Laure, 2009. "Survival prediction using gene expression data: A review and comparison," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1590-1603, March.
    3. Douglas M Ruderfer & David C Roberts & Stuart L Schreiber & Ethan O Perlstein & Leonid Kruglyak, 2009. "Using Expression and Genotype to Predict Drug Response in Yeast," PLOS ONE, Public Library of Science, vol. 4(9), pages 1-7, September.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    6. Bair, Eric & Hastie, Trevor & Paul, Debashis & Tibshirani, Robert, 2006. "Prediction by Supervised Principal Components," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 119-137, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debamita Kundu & Riten Mitra & Jeremy T. Gaskins, 2021. "Bayesian variable selection for multioutcome models through shared shrinkage," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 295-320, March.
    2. David Kaplan & Chansoon Lee, 2018. "Optimizing Prediction Using Bayesian Model Averaging: Examples Using Large-Scale Educational Assessments," Evaluation Review, , vol. 42(4), pages 423-457, August.
    3. Hauzenberger Niko & Huber Florian & Pfarrhofer Michael & Zörner Thomas O., 2021. "Stochastic model specification in Markov switching vector error correction models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
    4. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    5. Antoniadis, Anestis & Fryzlewicz, Piotr & Letué, Frédérique, 2010. "The Dantzig selector in Cox's proportional hazards model," LSE Research Online Documents on Economics 30992, London School of Economics and Political Science, LSE Library.
    6. Nott, David J. & Leng, Chenlei, 2010. "Bayesian projection approaches to variable selection in generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3227-3241, December.
    7. Tenan, Simone & O’Hara, Robert B. & Hendriks, Iris & Tavecchia, Giacomo, 2014. "Bayesian model selection: The steepest mountain to climb," Ecological Modelling, Elsevier, vol. 283(C), pages 62-69.
    8. Oliver J. Rutz & Garrett P. Sonnier, 2019. "VANISH regularization for generalized linear models," Quantitative Marketing and Economics (QME), Springer, vol. 17(4), pages 415-437, December.
    9. Se Yoon Lee & Bani K. Mallick, 2022. "Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 1-43, May.
    10. Feng, Xiangnan & Lu, Bin & Song, Xinyuan & Ma, Shuang, 2019. "Financial literacy and household finances: A Bayesian two-part latent variable modeling approach," Journal of Empirical Finance, Elsevier, vol. 51(C), pages 119-137.
    11. Joyee Ghosh & Amy H. Herring & Anna Maria Siega-Riz, 2011. "Bayesian Variable Selection for Latent Class Models," Biometrics, The International Biometric Society, vol. 67(3), pages 917-925, September.
    12. Wei Zhang & Takayo Ota & Viji Shridhar & Jeremy Chien & Baolin Wu & Rui Kuang, 2013. "Network-based Survival Analysis Reveals Subnetwork Signatures for Predicting Outcomes of Ovarian Cancer Treatment," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-16, March.
    13. Li, Jianan & Han, Xiaoyi, 2019. "Bayesian Lassos for spatial durbin error model with smoothness prior: Application to detect spillovers of China's treaty ports," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 38-74.
    14. Yinghan Chen & Steven Andrew Culpepper & Yuguo Chen, 2023. "Bayesian Inference for an Unknown Number of Attributes in Restricted Latent Class Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 613-635, June.
    15. Yi Nengjun & Xu Shizhong & Lou Xiang-Yang & Mallick Himel, 2014. "Multiple comparisons in genetic association studies: a hierarchical modeling approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 35-48, February.
    16. Anestis Antoniadis & Piotr Fryzlewicz & Frédérique Letué, 2010. "The Dantzig Selector in Cox's Proportional Hazards Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 531-552, December.
    17. Saverio Ranciati & Giuliano Galimberti & Gabriele Soffritti, 2019. "Bayesian variable selection in linear regression models with non-normal errors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 323-358, June.
    18. Jianhong Wang & Xiaoyan Lin, 2020. "A Bayesian approach for semiparametric regression analysis of panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 402-420, April.
    19. Hamura, Yasuyuki & Irie, Kaoru & Sugasawa, Shonosuke, 2022. "Log-regularly varying scale mixture of normals for robust regression," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    20. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0115532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.