IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0026959.html
   My bibliography  Save this article

A Bayesian Mixed Regression Based Prediction of Quantitative Traits from Molecular Marker and Gene Expression Data

Author

Listed:
  • Madhuchhanda Bhattacharjee
  • Mikko J Sillanpää

Abstract

Both molecular marker and gene expression data were considered alone as well as jointly to serve as additive predictors for two pathogen-activity-phenotypes in real recombinant inbred lines of soybean. For unobserved phenotype prediction, we used a Bayesian hierarchical regression modeling, where the number of possible predictors in the model was controlled by different selection strategies tested. Our initial findings were submitted for DREAM5 (the 5th Dialogue on Reverse Engineering Assessment and Methods challenge) and were judged to be the best in sub-challenge B3 wherein both functional genomic and genetic data were used to predict the phenotypes. In this work we further improve upon this previous work by considering various predictor selection strategies and cross-validation was used to measure accuracy of in-data and out-data predictions. The results from various model choices indicate that for this data use of both data types (namely functional genomic and genetic) simultaneously improves out-data prediction accuracy. Adequate goodness-of-fit can be easily achieved with more complex models for both phenotypes, since the number of potential predictors is large and the sample size is not small. We also further studied gene-set enrichment (for continuous phenotype) in the biological process in question and chromosomal enrichment of the gene set. The methodological contribution of this paper is in exploration of variable selection techniques to alleviate the problem of over-fitting. Different strategies based on the nature of covariates were explored and all methods were implemented under the Bayesian hierarchical modeling framework with indicator-based covariate selection. All the models based in careful variable selection procedure were found to produce significant results based on permutation test.

Suggested Citation

  • Madhuchhanda Bhattacharjee & Mikko J Sillanpää, 2011. "A Bayesian Mixed Regression Based Prediction of Quantitative Traits from Molecular Marker and Gene Expression Data," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-13, November.
  • Handle: RePEc:plo:pone00:0026959
    DOI: 10.1371/journal.pone.0026959
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026959
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0026959&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0026959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Takagi & Hirokazu Matsuda & Yukio Taniguchi & Hiroaki Iwaisaki, 2014. "Predicting the Phenotypic Values of Physiological Traits Using SNP Genotype and Gene Expression Data in Mice," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0026959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.