IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0109359.html
   My bibliography  Save this article

Cognitive Distance, Absorptive Capacity and Group Rationality: A Simulation Study

Author

Listed:
  • Petru Lucian Curşeu
  • Oleh Krehel
  • Joep H M Evers
  • Adrian Muntean

Abstract

We report the results of a simulation study in which we explore the joint effect of group absorptive capacity (as the average individual rationality of the group members) and cognitive distance (as the distance between the most rational group member and the rest of the group) on the emergence of collective rationality in groups. We start from empirical results reported in the literature on group rationality as collective group level competence and use data on real-life groups of four and five to validate a mathematical model. We then use this mathematical model to predict group level scores from a variety of possible group configurations (varying both in cognitive distance and average individual rationality). Our results show that both group competence and cognitive distance are necessary conditions for emergent group rationality. Group configurations, in which the groups become more rational than the most rational group member, are groups scoring low on cognitive distance and scoring high on absorptive capacity.

Suggested Citation

  • Petru Lucian Curşeu & Oleh Krehel & Joep H M Evers & Adrian Muntean, 2014. "Cognitive Distance, Absorptive Capacity and Group Rationality: A Simulation Study," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-6, October.
  • Handle: RePEc:plo:pone00:0109359
    DOI: 10.1371/journal.pone.0109359
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109359
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0109359&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0109359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Teppo Felin & Steve W. J. Kozlowski & Georgia T. Chao, 2012. "The Dynamics of Emergence: Cognition and Cohesion in Work Teams," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 33(5-6), pages 335-354, July.
    2. Takao Sasaki & Stephen C. Pratt, 2011. "Emergence of group rationality from irrational individuals," Behavioral Ecology, International Society for Behavioral Ecology, vol. 22(2), pages 276-281.
    3. Guillaume Deffuant & Frederic Amblard & Gérard Weisbuch, 2002. "How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(4), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tianyu & Dong, Peiwu & Zeng, Yongchao & Ju, Yanbing, 2022. "Analyzing the diffusion of competitive smart wearable devices: An agent-based multi-dimensional relative agreement model," Journal of Business Research, Elsevier, vol. 139(C), pages 90-105.
    2. George Butler & Gabriella Pigozzi & Juliette Rouchier, 2019. "Mixing Dyadic and Deliberative Opinion Dynamics in an Agent-Based Model of Group Decision-Making," Complexity, Hindawi, vol. 2019, pages 1-31, August.
    3. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    4. Jiunyan Wu & Tomoki Sekiguchi, 2020. "A multilevel and dynamic model of intragroup conflict and decision making: application of agent-based modeling," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.
    5. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    6. repec:hal:wpaper:hal-00623966 is not listed on IDEAS
    7. Lipiecki, Arkadiusz & Sznajd-Weron, Katarzyna, 2022. "Polarization in the three-state q-voter model with anticonformity and bounded confidence," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    8. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    9. Song, Xiao & Shi, Wen & Tan, Gary & Ma, Yaofei, 2015. "Multi-level tolerance opinion dynamics in military command and control networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 322-332.
    10. Song, Xiao & Zhang, Shaoyun & Qian, Lidong, 2013. "Opinion dynamics in networked command and control organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5206-5217.
    11. Wander Jager & Frédéric Amblard, 2005. "Uniformity, Bipolarization and Pluriformity Captured as Generic Stylized Behavior with an Agent-Based Simulation Model of Attitude Change," Computational and Mathematical Organization Theory, Springer, vol. 10(4), pages 295-303, January.
    12. Gabbay, Michael, 2007. "The effects of nonlinear interactions and network structure in small group opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 118-126.
    13. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    14. Sylvie Huet & Jean-Denis Mathias, 2018. "Few Self-Involved Agents Among Bounded Confidence Agents Can Change Norms," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-27, September.
    15. Thomas Feliciani & Andreas Flache & Jochem Tolsma, 2017. "How, when and where can Spatial Segregation Induce Opinion Polarization? Two Competing Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(2), pages 1-6.
    16. H. Emre Yildiz & Adis Murtic & Udo Zander & Anders Richtnér, 2019. "What Fosters Individual-Level Absorptive Capacity in MNCs? An Extended Motivation–Ability–Opportunity Framework," Management International Review, Springer, vol. 59(1), pages 93-129, February.
    17. Robinson, Scott A. & Rai, Varun, 2015. "Determinants of spatio-temporal patterns of energy technology adoption: An agent-based modeling approach," Applied Energy, Elsevier, vol. 151(C), pages 273-284.
    18. Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.
    19. Elenna R Dugundji & László Gulyás, 2008. "Sociodynamic Discrete Choice on Networks in Space: Impacts of Agent Heterogeneity on Emergent Outcomes," Environment and Planning B, , vol. 35(6), pages 1028-1054, December.
    20. Song, Xiao & Shi, Wen & Ma, Yaofei & Yang, Chen, 2015. "Impact of informal networks on opinion dynamics in hierarchically formal organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 916-924.
    21. Si, Xia-Meng & Liu, Yun & Xiong, Fei & Zhang, Yan-Chao & Ding, Fei & Cheng, Hui, 2010. "Effects of selective attention on continuous opinions and discrete decisions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3711-3719.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0109359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.