IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0104057.html
   My bibliography  Save this article

Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology

Author

Listed:
  • Yohei Murakami

Abstract

Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named “posterior parameter ensemble”. We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor.

Suggested Citation

  • Yohei Murakami, 2014. "Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
  • Handle: RePEc:plo:pone00:0104057
    DOI: 10.1371/journal.pone.0104057
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104057
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0104057&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0104057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroaki Kitano, 2002. "Computational systems biology," Nature, Nature, vol. 420(6912), pages 206-210, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marissa Renardy & Tau-Mu Yi & Dongbin Xiu & Ching-Shan Chou, 2018. "Parameter uncertainty quantification using surrogate models applied to a spatial model of yeast mating polarization," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandra, Yanto & Wilkinson, Ian F., 2017. "Firm internationalization from a network-centric complex-systems perspective," Journal of World Business, Elsevier, vol. 52(5), pages 691-701.
    2. Mika Gustafsson & Michael Hörnquist, 2010. "Gene Expression Prediction by Soft Integration and the Elastic Net—Best Performance of the DREAM3 Gene Expression Challenge," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-8, February.
    3. Niki Vermeulen, 2018. "The choreography of a new research field: Aggregation, circulation and oscillation," Environment and Planning A, , vol. 50(8), pages 1764-1784, November.
    4. Armaghan W Naik & Joshua D Kangas & Christopher J Langmead & Robert F Murphy, 2013. "Efficient Modeling and Active Learning Discovery of Biological Responses," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    5. Joep P J Schmitz & Jeroen A L Jeneson & Joep W M van Oorschot & Jeanine J Prompers & Klaas Nicolay & Peter A J Hilbers & Natal A W van Riel, 2012. "Prediction of Muscle Energy States at Low Metabolic Rates Requires Feedback Control of Mitochondrial Respiratory Chain Activity by Inorganic Phosphate," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
    6. Marco S Nobile & Paolo Cazzaniga & Daniela Besozzi & Dario Pescini & Giancarlo Mauri, 2014. "cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-20, March.
    7. Fabian Fröhlich & Barbara Kaltenbacher & Fabian J Theis & Jan Hasenauer, 2017. "Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-18, January.
    8. Markus J. Buehler & Theodor Ackbarow, 2008. "Nanomechanical strength mechanisms of hierarchical biological materials and tissues," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 11(6), pages 595-607.
    9. Luca Cardelli & Rosa D Hernansaiz-Ballesteros & Neil Dalchau & Attila Csikász-Nagy, 2017. "Efficient Switches in Biology and Computer Science," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-16, January.
    10. Joshua Russell-Buckland & Christopher P Barnes & Ilias Tachtsidis, 2019. "A Bayesian framework for the analysis of systems biology models of the brain," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-29, April.
    11. Wenpin Hou & Takeyuki Tamura & Wai-Ki Ching & Tatsuya Akutsu, 2016. "Finding And Analyzing The Minimum Set Of Driver Nodes In Control Of Boolean Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-32, May.
    12. Joly, Marcel & Rondó, Patrícia H.C., 2017. "The future of computational biomedicine: Complex systems thinking," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 1-27.
    13. Gianluca D’Addese & Martina Casari & Roberto Serra & Marco Villani, 2021. "A Fast and Effective Method to Identify Relevant Sets of Variables in Complex Systems," Mathematics, MDPI, vol. 9(9), pages 1-27, April.
    14. Leonard Schmiester & Yannik Schälte & Frank T Bergmann & Tacio Camba & Erika Dudkin & Janine Egert & Fabian Fröhlich & Lara Fuhrmann & Adrian L Hauber & Svenja Kemmer & Polina Lakrisenko & Carolin Loo, 2021. "PEtab—Interoperable specification of parameter estimation problems in systems biology," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-10, January.
    15. Christian L Barrett & Bernhard O Palsson, 2006. "Iterative Reconstruction of Transcriptional Regulatory Networks: An Algorithmic Approach," PLOS Computational Biology, Public Library of Science, vol. 2(5), pages 1-10, May.
    16. Zandi-Mehran, Nazanin & Panahi, Shirin & Hosseini, Zahra & Hashemi Golpayegani, Seyed Mohammad Reza & Jafari, Sajad, 2020. "One dimensional map-based neuron model: A phase space interpretation," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    17. Pier Luigi Sacco & Alex Arenas & Manlio De Domenico, 2022. "The resilience of the multirelational structure of geopolitical treaties is critically linked to past colonial world order and offshore fiscal havens," Papers 2203.00618, arXiv.org.
    18. Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
    19. Mark Read & Paul S. Andrews & Jon Timmis & Vipin Kumar, 2011. "Techniques for grounding agent-based simulations in the real domain: a case study in experimental autoimmune encephalomyelitis," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(1), pages 67-86, May.
    20. Jacobo Ayensa-Jiménez & Marina Pérez-Aliacar & Teodora Randelovic & José Antonio Sanz-Herrera & Mohamed H. Doweidar & Manuel Doblaré, 2020. "Analysis of the Parametric Correlation in Mathematical Modeling of In Vitro Glioblastoma Evolution Using Copulas," Mathematics, MDPI, vol. 9(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0104057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.