IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0080969.html
   My bibliography  Save this article

Application of a Hybrid Model for Predicting the Incidence of Tuberculosis in Hubei, China

Author

Listed:
  • Guoliang Zhang
  • Shuqiong Huang
  • Qionghong Duan
  • Wen Shu
  • Yongchun Hou
  • Shiyu Zhu
  • Xiaoping Miao
  • Shaofa Nie
  • Sheng Wei
  • Nan Guo
  • Hua Shan
  • Yihua Xu

Abstract

Background: A prediction model for tuberculosis incidence is needed in China which may be used as a decision-supportive tool for planning health interventions and allocating health resources. Methods: The autoregressive integrated moving average (ARIMA) model was first constructed with the data of tuberculosis report rate in Hubei Province from Jan 2004 to Dec 2011.The data from Jan 2012 to Jun 2012 were used to validate the model. Then the generalized regression neural network (GRNN)-ARIMA combination model was established based on the constructed ARIMA model. Finally, the fitting and prediction accuracy of the two models was evaluated. Results: A total of 465,960 cases were reported between Jan 2004 and Dec 2011 in Hubei Province. The report rate of tuberculosis was highest in 2005 (119.932 per 100,000 population) and lowest in 2010 (84.724 per 100,000 population). The time series of tuberculosis report rate show a gradual secular decline and a striking seasonal variation. The ARIMA (2, 1, 0) × (0, 1, 1)12 model was selected from several plausible ARIMA models. The residual mean square error of the GRNN-ARIMA model and ARIMA model were 0.4467 and 0.6521 in training part, and 0.0958 and 0.1133 in validation part, respectively. The mean absolute error and mean absolute percentage error of the hybrid model were also less than the ARIMA model. Discussion and Conclusions: The gradual decline in tuberculosis report rate may be attributed to the effect of intensive measures on tuberculosis. The striking seasonal variation may have resulted from several factors. We suppose that a delay in the surveillance system may also have contributed to the variation. According to the fitting and prediction accuracy, the hybrid model outperforms the traditional ARIMA model, which may facilitate the allocation of health resources in China.

Suggested Citation

  • Guoliang Zhang & Shuqiong Huang & Qionghong Duan & Wen Shu & Yongchun Hou & Shiyu Zhu & Xiaoping Miao & Shaofa Nie & Sheng Wei & Nan Guo & Hua Shan & Yihua Xu, 2013. "Application of a Hybrid Model for Predicting the Incidence of Tuberculosis in Hubei, China," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
  • Handle: RePEc:plo:pone00:0080969
    DOI: 10.1371/journal.pone.0080969
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080969
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0080969&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0080969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Radina P Soebiyanto & Farida Adimi & Richard K Kiang, 2010. "Modeling and Predicting Seasonal Influenza Transmission in Warm Regions Using Climatological Parameters," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-10, March.
    2. Daniel C Medina & Sally E Findley & Boubacar Guindo & Seydou Doumbia, 2007. "Forecasting Non-Stationary Diarrhea, Acute Respiratory Infection, and Malaria Time-Series in Niono, Mali," PLOS ONE, Public Library of Science, vol. 2(11), pages 1-13, November.
    3. Zhong-wei Jia & Shi-ming Cheng & Zhi-jun Li & Xin Du & Fei Huang & Xiao-wei Jia & Peng Kong & Yun-xi Liu & Wei Chen & Wei Wang & Christopher Dye, 2010. "Combining Domestic and Foreign Investment to Expand Tuberculosis Control in China," PLOS Medicine, Public Library of Science, vol. 7(11), pages 1-6, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Margherita Grasso & Matteo Manera & Aline Chiabai & Anil Markandya, 2012. "The Health Effects of Climate Change: A Survey of Recent Quantitative Research," IJERPH, MDPI, vol. 9(5), pages 1-25, April.
    2. Xiao-Dong Yang & Hong-Li Li & Yue-E Cao, 2021. "Influence of Meteorological Factors on the COVID-19 Transmission with Season and Geographic Location," IJERPH, MDPI, vol. 18(2), pages 1-13, January.
    3. Stephen J Gilmore, 2011. "Control Strategies for Endemic Childhood Scabies," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-14, January.
    4. Charles Stoecker & Nicholas J. Sanders & Alan Barreca, 2016. "Success Is Something to Sneeze At: Influenza Mortality in Cities that Participate in the Super Bowl," American Journal of Health Economics, MIT Press, vol. 2(1), pages 125-143, January.
    5. Wudi Wei & Junjun Jiang & Hao Liang & Lian Gao & Bingyu Liang & Jiegang Huang & Ning Zang & Yanyan Liao & Jun Yu & Jingzhen Lai & Fengxiang Qin & Jinming Su & Li Ye & Hui Chen, 2016. "Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-13, June.
    6. -, 2011. "An economic assessment of the impact of climate change on the health sector in Montserrat," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38589, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    7. Oren Barnea & Amit Huppert & Guy Katriel & Lewi Stone, 2014. "Spatio-Temporal Synchrony of Influenza in Cities across Israel: The “Israel Is One City” Hypothesis," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    8. Alexander Cardazzi & Brad Humphreys & Jane E. Ruseski & Brian P. Soebbing & Nicholas Watanabe, 2020. "Professional Sporting Events Increase Seasonal Influenza Mortality in US Cities," Working Papers 20-08, Department of Economics, West Virginia University.
    9. Bekiros, Stelios & Kouloumpou, Dimitra, 2020. "SBDiEM: A new mathematical model of infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    10. Kathleen A. Alexander & Marcos Carzolio & Douglas Goodin & Eric Vance, 2013. "Climate Change is Likely to Worsen the Public Health Threat of Diarrheal Disease in Botswana," IJERPH, MDPI, vol. 10(4), pages 1-29, March.
    11. Eline L Korenromp & Philippe Glaziou & Christopher Fitzpatrick & Katherine Floyd & Mehran Hosseini & Mario Raviglione & Rifat Atun & Brian Williams, 2012. "Implementing the Global Plan to Stop TB, 2011–2015 – Optimizing Allocations and the Global Fund’s Contribution: A Scenario Projections Study," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-10, June.
    12. Charles Stoecker & Nicholas J. Sanders & Alan Barreca, 2015. "Success is Something to Sneeze at: Influenza Mortality in Regions that Send Teams to the Super Bowl," Working Papers 1501, Tulane University, Department of Economics.
    13. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    14. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    15. -, 2011. "An assessment of the economic impact Of climate change on the health sector in Saint Lucia," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38597, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    16. Jean-Paul Chretien & Dylan George & Jeffrey Shaman & Rohit A Chitale & F Ellis McKenzie, 2014. "Influenza Forecasting in Human Populations: A Scoping Review," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    17. Rui Zhang & Hejia Song & Qiulan Chen & Yu Wang & Songwang Wang & Yonghong Li, 2022. "Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-14, January.
    18. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2015. "Flexible Modeling of Epidemics with an Empirical Bayes Framework," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
    19. Soo Beom Choi & Insung Ahn, 2020. "Forecasting seasonal influenza-like illness in South Korea after 2 and 30 weeks using Google Trends and influenza data from Argentina," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    20. Kookjin Lee & Jaideep Ray & Cosmin Safta, 2021. "The predictive skill of convolutional neural networks models for disease forecasting," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-26, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0080969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.