IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0015990.html
   My bibliography  Save this article

Control Strategies for Endemic Childhood Scabies

Author

Listed:
  • Stephen J Gilmore

Abstract

Human scabies is a major global public health issue, with an estimated 300 million cases per year worldwide. Prevalence rates are particularly high in many third-world regions and within various indigenous communities in developed countries. Infestation with Sarcoptes Scabiei is associated with group-A streptococcal pyoderma which in turn predisposes to rheumatic fever, acute glomerulonephritis and their respective long-term sequelae: rheumatic heart disease and chronic renal insufficiency. The documented difficulties inherent in achieving scabies control within affected communities have motivated us to develop a network-dependent Monte-Carlo model of the scabies contagion, with the dual aims of gaining insight into its dynamics, and in determining the effects of various treatment strategies. Here we show that scabies burden is adversely affected by increases in average network degree, prominent network clustering, and by a person-to-person transmissibility of greater magnitude. We demonstrate that creating a community-specific model allows for the determination of an effective treatment protocol that can satisfy any pre-defined target prevalence. We find frequent low-density treatment protocols are inherently advantageous in comparison with infrequent mass screening and treatment regimes: prevalence rates are lower when compared with protocols that administer the same number of treatments over a given time interval less frequently, and frequent low-density treatment protocols have economic, practical and public acceptance advantages that may facilitate their long-term implementation. This work demonstrates the importance of stochasticity, community structure and the heterogeneity of individuals in influencing the dynamics of the human scabies contagion, and provides a practical method for investigating the outcomes of various intervention strategies.

Suggested Citation

  • Stephen J Gilmore, 2011. "Control Strategies for Endemic Childhood Scabies," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-14, January.
  • Handle: RePEc:plo:pone00:0015990
    DOI: 10.1371/journal.pone.0015990
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0015990
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0015990&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0015990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel C Medina & Sally E Findley & Boubacar Guindo & Seydou Doumbia, 2007. "Forecasting Non-Stationary Diarrhea, Acute Respiratory Infection, and Malaria Time-Series in Niono, Mali," PLOS ONE, Public Library of Science, vol. 2(11), pages 1-13, November.
    2. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. AlShamrani, N.H. & Elaiw, A.M. & Batarfi, H. & Hobiny, A.D. & Dutta, H., 2020. "Global stability analysis of a general nonlinear scabies dynamics model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    2. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    3. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    4. Xie, Xiaoxiao & Huo, Liang'an, 2024. "Co-evolution dynamics between information and epidemic with asymmetric activity levels and community structure in time-varying multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Margherita Grasso & Matteo Manera & Aline Chiabai & Anil Markandya, 2012. "The Health Effects of Climate Change: A Survey of Recent Quantitative Research," IJERPH, MDPI, vol. 9(5), pages 1-25, April.
    6. Bowen Yan & Steve Gregory, 2013. "Identifying Communities and Key Vertices by Reconstructing Networks from Samples," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-14, April.
    7. Zhou, Bin & Yan, Xiao-Yong & Xu, Xiao-Ke & Xu, Xiao-Ting & Wang, Nianxin, 2018. "Evolutionary of online social networks driven by pareto wealth distribution and bidirectional preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 427-434.
    8. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    9. Saxena, Chandni & Doja, M.N. & Ahmad, Tanvir, 2018. "Group based centrality for immunization of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 35-47.
    10. Kotnis, Bhushan & Kuri, Joy, 2016. "Cost effective campaigning in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 670-681.
    11. Kathrin Büttner & Joachim Krieter & Arne Traulsen & Imke Traulsen, 2013. "Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
    12. -, 2011. "An economic assessment of the impact of climate change on the health sector in Montserrat," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38589, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    13. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    14. Shams, Bita & Khansari, Mohammad, 2015. "On the impact of epidemic severity on network immunization algorithms," Theoretical Population Biology, Elsevier, vol. 106(C), pages 83-93.
    15. Guoliang Zhang & Shuqiong Huang & Qionghong Duan & Wen Shu & Yongchun Hou & Shiyu Zhu & Xiaoping Miao & Shaofa Nie & Sheng Wei & Nan Guo & Hua Shan & Yihua Xu, 2013. "Application of a Hybrid Model for Predicting the Incidence of Tuberculosis in Hubei, China," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    16. Karikalan Nagarajan & Bharathidasan Palani & Javeed Basha & Lavanya Jayabal & Malaisamy Muniyandi, 2022. "A social networks-driven approach to understand the unique alcohol mixing patterns of tuberculosis patients: reporting methods and findings from a high TB-burden setting," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-8, December.
    17. Gong Kai & Kang Li, 2018. "A New K-Shell Decomposition Method for Identifying Influential Spreaders of Epidemics on Community Networks," Journal of Systems Science and Information, De Gruyter, vol. 6(4), pages 366-375, August.
    18. Kathleen A. Alexander & Marcos Carzolio & Douglas Goodin & Eric Vance, 2013. "Climate Change is Likely to Worsen the Public Health Threat of Diarrheal Disease in Botswana," IJERPH, MDPI, vol. 10(4), pages 1-29, March.
    19. Tzai-Hung Wen & Wei Chien Benny Chin, 2015. "Incorporation of Spatial Interactions in Location Networks to Identify Critical Geo-Referenced Routes for Assessing Disease Control Measures on a Large-Scale Campus," IJERPH, MDPI, vol. 12(4), pages 1-15, April.
    20. Luis E C Rocha & Vincent D Blondel, 2013. "Bursts of Vertex Activation and Epidemics in Evolving Networks," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-9, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0015990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.