IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/1000488.html
   My bibliography  Save this article

Stochastic E2F Activation and Reconciliation of Phenomenological Cell-Cycle Models

Author

Listed:
  • Tae J Lee
  • Guang Yao
  • Dorothy C Bennett
  • Joseph R Nevins
  • Lingchong You

Abstract

A new, stochastic model of entry into the mammalian cell cycle provides a mechanistic understanding of the temporal variability observed across populations of cells and reconciles previously proposed phenomenological cell-cycle models.The transition of the mammalian cell from quiescence to proliferation is a highly variable process. Over the last four decades, two lines of apparently contradictory, phenomenological models have been proposed to account for such temporal variability. These include various forms of the transition probability (TP) model and the growth control (GC) model, which lack mechanistic details. The GC model was further proposed as an alternative explanation for the concept of the restriction point, which we recently demonstrated as being controlled by a bistable Rb-E2F switch. Here, through a combination of modeling and experiments, we show that these different lines of models in essence reflect different aspects of stochastic dynamics in cell cycle entry. In particular, we show that the variable activation of E2F can be described by stochastic activation of the bistable Rb-E2F switch, which in turn may account for the temporal variability in cell cycle entry. Moreover, we show that temporal dynamics of E2F activation can be recast into the frameworks of both the TP model and the GC model via parameter mapping. This mapping suggests that the two lines of phenomenological models can be reconciled through the stochastic dynamics of the Rb-E2F switch. It also suggests a potential utility of the TP or GC models in defining concise, quantitative phenotypes of cell physiology. This may have implications in classifying cell types or states.Author Summary: Mammalian cells enter the division cycle in response to appropriate growth signals. For each cell, the decision to do so is critically dependent on the interplay between environmental cues and the internal state of the cell and is influenced by random fluctuations in cellular processes. Indeed, experimental evidence indicates that cell cycle entry is highly variable from cell to cell, even within a clonal population. To account for such variability, a number of phenomenological models have been previously proposed. These models primarily fall into two types depending on their fundamental assumptions on the origin of the variability. “Transition probability” models presume that variability in cell cycle entry originates from the fact that entry in each individual cell is random but also governed by a fixed probability. In contrast, “growth-controlled” models assume that the growth rates across a population are variable and result in cells that are out of phase developmentally. While both kinds of models provide a good fit to experimental data, their lack of mechanistic details limits their predictive power and has led to unresolved debate between their practitioners. In this study, we developed a mechanistically based stochastic model of the temporal dynamics of activation of the E2F transcription factor, which is used here as a marker of the transition of cells from quiescence to active cell cycling. Using this model, we show that “transition probability” and “growth-controlled” models can be reconciled by incorporation of a small number of basic cellular parameters related to protein synthesis and turnover, protein modification, stochasticity, and the like. Essentially our work shows that each kind of phenomenological model holds true for describing a particular aspect of the cell cycle transition. We suggest that incorporation of basic cellular parameters in this manner into phenomenological models may constitute a broadly applicable approach to defining concise, quantitative phenotypes of cell physiology.

Suggested Citation

  • Tae J Lee & Guang Yao & Dorothy C Bennett & Joseph R Nevins & Lingchong You, 2010. "Stochastic E2F Activation and Reconciliation of Phenomenological Cell-Cycle Models," PLOS Biology, Public Library of Science, vol. 8(9), pages 1-11, September.
  • Handle: RePEc:plo:pbio00:1000488
    DOI: 10.1371/journal.pbio.1000488
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1000488
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1000488&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.1000488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan M. Skotheim & Stefano Di Talia & Eric D. Siggia & Frederick R. Cross, 2008. "Positive feedback of G1 cyclins ensures coherent cell cycle entry," Nature, Nature, vol. 454(7202), pages 291-296, July.
    2. Sabrina L. Spencer & Suzanne Gaudet & John G. Albeck & John M. Burke & Peter K. Sorger, 2009. "Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis," Nature, Nature, vol. 459(7245), pages 428-432, May.
    3. Dmitri Volfson & Jennifer Marciniak & William J. Blake & Natalie Ostroff & Lev S. Tsimring & Jeff Hasty, 2006. "Origins of extrinsic variability in eukaryotic gene expression," Nature, Nature, vol. 439(7078), pages 861-864, February.
    4. Yu Tanouchi & Dennis Tu & Jungsang Kim & Lingchong You, 2008. "Noise Reduction by Diffusional Dissipation in a Minimal Quorum Sensing Motif," PLOS Computational Biology, Public Library of Science, vol. 4(8), pages 1-8, August.
    5. Johan Paulsson, 2004. "Summing up the noise in gene networks," Nature, Nature, vol. 427(6973), pages 415-418, January.
    6. Andrea H. Bild & Guang Yao & Jeffrey T. Chang & Quanli Wang & Anil Potti & Dawn Chasse & Mary-Beth Joshi & David Harpole & Johnathan M. Lancaster & Andrew Berchuck & John A. Olson & Jeffrey R. Marks &, 2006. "Oncogenic pathway signatures in human cancers as a guide to targeted therapies," Nature, Nature, vol. 439(7074), pages 353-357, January.
    7. Alejandro Colman-Lerner & Andrew Gordon & Eduard Serra & Tina Chin & Orna Resnekov & Drew Endy & C. Gustavo Pesce & Roger Brent, 2005. "Regulated cell-to-cell variation in a cell-fate decision system," Nature, Nature, vol. 437(7059), pages 699-706, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    2. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    3. Artémis Llamosi & Andres M Gonzalez-Vargas & Cristian Versari & Eugenio Cinquemani & Giancarlo Ferrari-Trecate & Pascal Hersen & Gregory Batt, 2016. "What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-18, February.
    4. Andreas Doncic & Umut Eser & Oguzhan Atay & Jan M Skotheim, 2013. "An Algorithm to Automate Yeast Segmentation and Tracking," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-11, March.
    5. Arjun Raj & Charles S Peskin & Daniel Tranchina & Diana Y Vargas & Sanjay Tyagi, 2006. "Stochastic mRNA Synthesis in Mammalian Cells," PLOS Biology, Public Library of Science, vol. 4(10), pages 1-13, September.
    6. Christoph Zechner & Heinz Koeppl, 2014. "Uncoupled Analysis of Stochastic Reaction Networks in Fluctuating Environments," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-9, December.
    7. Benjamin B Kaufmann & Qiong Yang & Jerome T Mettetal & Alexander van Oudenaarden, 2007. "Heritable Stochastic Switching Revealed by Single-Cell Genealogy," PLOS Biology, Public Library of Science, vol. 5(9), pages 1-8, September.
    8. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    9. Junjie Su & Byung-Jun Yoon & Edward R Dougherty, 2009. "Accurate and Reliable Cancer Classification Based on Probabilistic Inference of Pathway Activity," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-10, December.
    10. Yichen Li & Yumin Li & Hui Zhang & Yong Chen, 2011. "MicroRNA-Mediated Positive Feedback Loop and Optimized Bistable Switch in a Cancer Network Involving miR-17-92," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-9, October.
    11. Carey K Anders & Chaitanya R Acharya & David S Hsu & Gloria Broadwater & Katherine Garman & John A Foekens & Yi Zhang & Yixin Wang & Kelly Marcom & Jeffrey R Marks & Sayan Mukherjee & Joseph R Nevins , 2008. "Age-Specific Differences in Oncogenic Pathway Deregulation Seen in Human Breast Tumors," PLOS ONE, Public Library of Science, vol. 3(1), pages 1-8, January.
    12. Yurie Okabe-Oho & Hiroki Murakami & Suguru Oho & Masaki Sasai, 2009. "Stable, Precise, and Reproducible Patterning of Bicoid and Hunchback Molecules in the Early Drosophila Embryo," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-20, August.
    13. Gil Hornung & Naama Barkai, 2008. "Noise Propagation and Signaling Sensitivity in Biological Networks: A Role for Positive Feedback," PLOS Computational Biology, Public Library of Science, vol. 4(1), pages 1-7, January.
    14. Verena Jabs & Karolina Edlund & Helena König & Marianna Grinberg & Katrin Madjar & Jörg Rahnenführer & Simon Ekman & Michael Bergkvist & Lars Holmberg & Katja Ickstadt & Johan Botling & Jan G Hengstle, 2017. "Integrative analysis of genome-wide gene copy number changes and gene expression in non-small cell lung cancer," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-23, November.
    15. Lee, Julian, 2023. "Poisson distributions in stochastic dynamics of gene expression: What events do they count?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    16. Eun Sung Park & Ju-Seog Lee & Hyun Goo Woo & Fenghuang Zhan & Joanna H Shih & John D Shaughnessy Jr. & J Frederic Mushinski, 2007. "Heterologous Tissue Culture Expression Signature Predicts Human Breast Cancer Prognosis," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-16, January.
    17. Lucy Ham & Megan A. Coomer & Kaan Öcal & Ramon Grima & Michael P. H. Stumpf, 2024. "A stochastic vs deterministic perspective on the timing of cellular events," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Xinan Yang & Kelly Regan & Yong Huang & Qingbei Zhang & Jianrong Li & Tanguy Y Seiwert & Ezra E W Cohen & H Rosie Xing & Yves A Lussier, 2012. "Single Sample Expression-Anchored Mechanisms Predict Survival in Head and Neck Cancer," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-18, January.
    19. Anneke Brümmer & Carlos Salazar & Vittoria Zinzalla & Lilia Alberghina & Thomas Höfer, 2010. "Mathematical Modelling of DNA Replication Reveals a Trade-off between Coherence of Origin Activation and Robustness against Rereplication," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-13, May.
    20. David P A Cohen & Loredana Martignetti & Sylvie Robine & Emmanuel Barillot & Andrei Zinovyev & Laurence Calzone, 2015. "Mathematical Modelling of Molecular Pathways Enabling Tumour Cell Invasion and Migration," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-29, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:1000488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.