IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003056.html
   My bibliography  Save this article

STL-based Analysis of TRAIL-induced Apoptosis Challenges the Notion of Type I/Type II Cell Line Classification

Author

Listed:
  • Szymon Stoma
  • Alexandre Donzé
  • François Bertaux
  • Oded Maler
  • Gregory Batt

Abstract

Extrinsic apoptosis is a programmed cell death triggered by external ligands, such as the TNF-related apoptosis inducing ligand (TRAIL). Depending on the cell line, the specific molecular mechanisms leading to cell death may significantly differ. Precise characterization of these differences is crucial for understanding and exploiting extrinsic apoptosis. Cells show distinct behaviors on several aspects of apoptosis, including (i) the relative order of caspases activation, (ii) the necessity of mitochondria outer membrane permeabilization (MOMP) for effector caspase activation, and (iii) the survival of cell lines overexpressing Bcl2. These differences are attributed to the activation of one of two pathways, leading to classification of cell lines into two groups: type I and type II. In this work we challenge this type I/type II cell line classification. We encode the three aforementioned distinguishing behaviors in a formal language, called signal temporal logic (STL), and use it to extensively test the validity of a previously-proposed model of TRAIL-induced apoptosis with respect to experimental observations made on different cell lines. After having solved a few inconsistencies using STL-guided parameter search, we show that these three criteria do not define consistent cell line classifications in type I or type II, and suggest mutants that are predicted to exhibit ambivalent behaviors. In particular, this finding sheds light on the role of a feedback loop between caspases, and reconciliates two apparently-conflicting views regarding the importance of either upstream or downstream processes for cell-type determination. More generally, our work suggests that these three distinguishing behaviors should be merely considered as type I/II features rather than cell-type defining criteria. On the methodological side, this work illustrates the biological relevance of STL-diagrams, STL population data, and STL-guided parameter search implemented in the tool Breach. Such tools are well-adapted to the ever-increasing availability of heterogeneous knowledge on complex signal transduction pathways.Author Summary: Apoptosis, a major form of programmed cell death, plays a crucial role in shaping organs during development and controls homeostasis and tissue integrity throughout life. Defective apoptosis is often involved in cancer development and progression. Current understanding of externally triggered apoptosis is that death results from the activation of one out of two parallel signal transduction pathways. This leads to a classification of cell lines in two main types: type I and II. In the context of chemotherapy, understanding the cell-line-specific molecular mechanisms of apoptosis is important since this could guide drug usage. Biologists investigate the details of signal transduction pathways often at the single cell level and construct models to assess their current understanding. However, no systematic approach is employed to check the consistency of model predictions and experimental observations on various cell lines. Here we propose to use a formal specification language to encode the observed properties and a systematic approach to test whether model predictions are consistent with expected properties. Such property-guided model development and model revision approaches should guarantee an optimal use of the often heterogeneous experimental data.

Suggested Citation

  • Szymon Stoma & Alexandre Donzé & François Bertaux & Oded Maler & Gregory Batt, 2013. "STL-based Analysis of TRAIL-induced Apoptosis Challenges the Notion of Type I/Type II Cell Line Classification," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-14, May.
  • Handle: RePEc:plo:pcbi00:1003056
    DOI: 10.1371/journal.pcbi.1003056
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003056
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003056&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sabrina L. Spencer & Suzanne Gaudet & John G. Albeck & John M. Burke & Peter K. Sorger, 2009. "Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis," Nature, Nature, vol. 459(7245), pages 428-432, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    2. Lucy Ham & Megan A. Coomer & Kaan Öcal & Ramon Grima & Michael P. H. Stumpf, 2024. "A stochastic vs deterministic perspective on the timing of cellular events," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Artémis Llamosi & Andres M Gonzalez-Vargas & Cristian Versari & Eugenio Cinquemani & Giancarlo Ferrari-Trecate & Pascal Hersen & Gregory Batt, 2016. "What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-18, February.
    4. Jan Hasenauer & Christine Hasenauer & Tim Hucho & Fabian J Theis, 2014. "ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-17, July.
    5. Andreas Doncic & Umut Eser & Oguzhan Atay & Jan M Skotheim, 2013. "An Algorithm to Automate Yeast Segmentation and Tracking," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-11, March.
    6. Dirke Imig & Nadine Pollak & Frank Allgöwer & Markus Rehm, 2020. "Sample-based modeling reveals bidirectional interplay between cell cycle progression and extrinsic apoptosis," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-17, June.
    7. Christopher C Govern & Arup K Chakraborty, 2013. "Stochastic Responses May Allow Genetically Diverse Cell Populations to Optimize Performance with Simpler Signaling Networks," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    8. Chad Liu & Chuan-Yuan Li & Fan Yuan, 2014. "Mathematical Modeling of the Phoenix Rising Pathway," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-10, February.
    9. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    10. Subhadip Raychaudhuri, 2010. "A Minimal Model of Signaling Network Elucidates Cell-to-Cell Stochastic Variability in Apoptosis," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-7, August.
    11. Leighton T Izu & Tamás Bányász & Ye Chen-Izu, 2015. "Optimizing Population Variability to Maximize Benefit," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-17, December.
    12. Suzanne Gaudet & Sabrina L Spencer & William W Chen & Peter K Sorger, 2012. "Exploring the Contextual Sensitivity of Factors that Determine Cell-to-Cell Variability in Receptor-Mediated Apoptosis," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-15, April.
    13. Andreas Raue & Marcel Schilling & Julie Bachmann & Andrew Matteson & Max Schelke & Daniel Kaschek & Sabine Hug & Clemens Kreutz & Brian D Harms & Fabian J Theis & Ursula Klingmüller & Jens Timmer, 2013. "Lessons Learned from Quantitative Dynamical Modeling in Systems Biology," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-17, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.