IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0071369.html
   My bibliography  Save this article

Mechanisms of Seizure Propagation in 2-Dimensional Centre-Surround Recurrent Networks

Author

Listed:
  • David Hall
  • Levin Kuhlmann

Abstract

Understanding how seizures spread throughout the brain is an important problem in the treatment of epilepsy, especially for implantable devices that aim to avert focal seizures before they spread to, and overwhelm, the rest of the brain. This paper presents an analysis of the speed of propagation in a computational model of seizure-like activity in a 2-dimensional recurrent network of integrate-and-fire neurons containing both excitatory and inhibitory populations and having a difference of Gaussians connectivity structure, an approximation to that observed in cerebral cortex. In the same computational model network, alternative mechanisms are explored in order to simulate the range of seizure-like activity propagation speeds (0.1–100 mm/s) observed in two animal-slice-based models of epilepsy: (1) low extracellular , which creates excess excitation and (2) introduction of gamma-aminobutyric acid (GABA) antagonists, which reduce inhibition. Moreover, two alternative connection topologies are considered: excitation broader than inhibition, and inhibition broader than excitation. It was found that the empirically observed range of propagation velocities can be obtained for both connection topologies. For the case of the GABA antagonist model simulation, consistent with other studies, it was found that there is an effective threshold in the degree of inhibition below which waves begin to propagate. For the case of the low extracellular model simulation, it was found that activity-dependent reductions in inhibition provide a potential explanation for the emergence of slowly propagating waves. This was simulated as a depression of inhibitory synapses, but it may also be achieved by other mechanisms. This work provides a localised network understanding of the propagation of seizures in 2-dimensional centre-surround networks that can be tested empirically.

Suggested Citation

  • David Hall & Levin Kuhlmann, 2013. "Mechanisms of Seizure Propagation in 2-Dimensional Centre-Surround Recurrent Networks," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-21, August.
  • Handle: RePEc:plo:pone00:0071369
    DOI: 10.1371/journal.pone.0071369
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071369
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0071369&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0071369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Catherine A. Schevon & Shennan A. Weiss & Guy McKhann & Robert R. Goodman & Rafael Yuste & Ronald G. Emerson & Andrew J. Trevelyan, 2012. "Evidence of an inhibitory restraint of seizure activity in humans," Nature Communications, Nature, vol. 3(1), pages 1-11, January.
    2. Pieter R. Roelfsema & Andreas K. Engel & Peter König & Wolf Singer, 1997. "Visuomotor integration is associated with zero time-lag synchronization among cortical areas," Nature, Nature, vol. 385(6612), pages 157-161, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura R González-Ramírez & Omar J Ahmed & Sydney S Cash & C Eugene Wayne & Mark A Kramer, 2015. "A Biologically Constrained, Mathematical Model of Cortical Wave Propagation Preceding Seizure Termination," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-34, February.
    2. Joshua M. Diamond & Julio I. Chapeton & Weizhen Xie & Samantha N. Jackson & Sara K. Inati & Kareem A. Zaghloul, 2024. "Focal seizures induce spatiotemporally organized spiking activity in the human cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Deng, Bin & Deng, Yun & Yu, Haitao & Guo, Xinmeng & Wang, Jiang, 2016. "Dependence of inter-neuronal effective connectivity on synchrony dynamics in neuronal network motifs," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 48-59.
    4. Laurent Sheybani & Umesh Vivekananda & Roman Rodionov & Beate Diehl & Fahmida A. Chowdhury & Andrew W. McEvoy & Anna Miserocchi & James A. Bisby & Daniel Bush & Neil Burgess & Matthew C. Walker, 2023. "Wake slow waves in focal human epilepsy impact network activity and cognition," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Andrea Alamia & Rufin VanRullen, 2019. "Alpha oscillations and traveling waves: Signatures of predictive coding?," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-26, October.
    6. Christian G Fink & Victoria Booth & Michal Zochowski, 2011. "Cellularly-Driven Differences in Network Synchronization Propensity Are Differentially Modulated by Firing Frequency," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    7. Andreas Wilmer & Marc de Lussanet & Markus Lappe, 2012. "Time-Delayed Mutual Information of the Phase as a Measure of Functional Connectivity," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-22, September.
    8. Michael N Economo & John A White, 2012. "Membrane Properties and the Balance between Excitation and Inhibition Control Gamma-Frequency Oscillations Arising from Feedback Inhibition," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-20, January.
    9. Suseendrakumar Duraivel & Shervin Rahimpour & Chia-Han Chiang & Michael Trumpis & Charles Wang & Katrina Barth & Stephen C. Harward & Shivanand P. Lad & Allan H. Friedman & Derek G. Southwell & Saurab, 2023. "High-resolution neural recordings improve the accuracy of speech decoding," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. John-Sebastian Mueller & Fabio C. Tescarollo & Trong Huynh & Daniel A. Brenner & Daniel J. Valdivia & Kanyin Olagbegi & Sahana Sangappa & Spencer C. Chen & Hai Sun, 2023. "Ictogenesis proceeds through discrete phases in hippocampal CA1 seizures in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Rajasimhan Rajagovindan & Mingzhou Ding, 2008. "Decomposing Neural Synchrony: Toward an Explanation for Near-Zero Phase-Lag in Cortical Oscillatory Networks," PLOS ONE, Public Library of Science, vol. 3(11), pages 1-8, November.
    12. Takayuki Onojima & Takahiro Goto & Hiroaki Mizuhara & Toshio Aoyagi, 2018. "A dynamical systems approach for estimating phase interactions between rhythms of different frequencies from experimental data," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-20, January.
    13. Yuki Bando & Michael Wenzel & Rafael Yuste, 2021. "Simultaneous two-photon imaging of action potentials and subthreshold inputs in vivo," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    14. Farrera-Megchun, Agustin & Padilla-Longoria, Pablo & Santos, Gerardo J. Escalera & Espinal-Enríquez, Jesús & Bernal-Jaquez, Roberto, 2024. "Neuron configuration enhances the synchronization dynamics in ring networks with heterogeneous firing patterns," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    15. Wu, Yong & Ding, Qianming & Huang, Weifang & Hu, Xueyan & Ye, Zhiqiu & Jia, Ya, 2024. "Dynamic modulation of external excitation enhance synchronization in complex neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    16. Mohan Raghavan & Bharadwaj Amrutur & Rishikesh Narayanan & Sujit Kumar Sikdar, 2013. "Synconset Waves and Chains: Spiking Onsets in Synchronous Populations Predict and Are Predicted by Network Structure," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-17, October.
    17. Enrico Pracucci & Robert T. Graham & Laura Alberio & Gabriele Nardi & Olga Cozzolino & Vinoshene Pillai & Giacomo Pasquini & Luciano Saieva & Darren Walsh & Silvia Landi & Jinwei Zhang & Andrew J. Tre, 2023. "Daily rhythm in cortical chloride homeostasis underpins functional changes in visual cortex excitability," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Wang, Jing & Ye, Weijie & Liu, Shenquan & Lu, Bo & Jiang, Xiaofang, 2016. "Qualitative and quantitative aspects of synchronization in coupled CA1 pyramidal neurons," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 32-38.
    19. Annika Hagemann & Jens Wilting & Bita Samimizad & Florian Mormann & Viola Priesemann, 2021. "Assessing criticality in pre-seizure single-neuron activity of human epileptic cortex," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-18, March.
    20. Yujiang Wang & Marc Goodfellow & Peter Neal Taylor & Gerold Baier, 2014. "Dynamic Mechanisms of Neocortical Focal Seizure Onset," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-18, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0071369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.