IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003787.html
   My bibliography  Save this article

Dynamic Mechanisms of Neocortical Focal Seizure Onset

Author

Listed:
  • Yujiang Wang
  • Marc Goodfellow
  • Peter Neal Taylor
  • Gerold Baier

Abstract

Recent experimental and clinical studies have provided diverse insight into the mechanisms of human focal seizure initiation and propagation. Often these findings exist at different scales of observation, and are not reconciled into a common understanding. Here we develop a new, multiscale mathematical model of cortical electric activity with realistic mesoscopic connectivity. Relating the model dynamics to experimental and clinical findings leads us to propose three classes of dynamical mechanisms for the onset of focal seizures in a unified framework. These three classes are: (i) globally induced focal seizures; (ii) globally supported focal seizures; (iii) locally induced focal seizures. Using model simulations we illustrate these onset mechanisms and show how the three classes can be distinguished. Specifically, we find that although all focal seizures typically appear to arise from localised tissue, the mechanisms of onset could be due to either localised processes or processes on a larger spatial scale. We conclude that although focal seizures might have different patient-specific aetiologies and electrographic signatures, our model suggests that dynamically they can still be classified in a clinically useful way. Additionally, this novel classification according to the dynamical mechanisms is able to resolve some of the previously conflicting experimental and clinical findings.Author Summary: According to the WHO fact sheet, epilepsy is a neurological disorder affecting about 50 million people worldwide. Even today 30% of epilepsy patients do not respond well to drug therapies. Neocortical focal epilepsy is a particular type of epilepsy in which drug treatments fail and surgical success rate is low. Hence, research is essential to improve the treatment of this type of epilepsy. Recent advances in brain recording methods have led to new observations regarding the nature of neocortical focal epilepsy. However, some of the observations appear to be contradictory. Here, we develop a computational modelling framework that can explain the different observations as different aspects of possible mechanisms that can all lead to seizure onset. Specifically, we classify three main conditions under which focal seizure onset can happen. This classification is clinically important, as our model predicts different treatment strategies for each class. We conclude that focal seizures are diverse, not only in their electrographic appearance and aetiology, but also in their onset mechanism. Combined multiscale recordings as well as stimulation studies are required to elucidate the onset mechanism in each patient. Our work provides the first classification of possible onset mechanism.

Suggested Citation

  • Yujiang Wang & Marc Goodfellow & Peter Neal Taylor & Gerold Baier, 2014. "Dynamic Mechanisms of Neocortical Focal Seizure Onset," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-18, August.
  • Handle: RePEc:plo:pcbi00:1003787
    DOI: 10.1371/journal.pcbi.1003787
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003787
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003787&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.