IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0003649.html
   My bibliography  Save this article

Decomposing Neural Synchrony: Toward an Explanation for Near-Zero Phase-Lag in Cortical Oscillatory Networks

Author

Listed:
  • Rajasimhan Rajagovindan
  • Mingzhou Ding

Abstract

Background: Synchronized oscillation in cortical networks has been suggested as a mechanism for diverse functions ranging from perceptual binding to memory formation to sensorimotor integration. Concomitant with synchronization is the occurrence of near-zero phase-lag often observed between network components. Recent theories have considered the importance of this phenomenon in establishing an effective communication framework among neuronal ensembles. Methodology/Principal Findings: Two factors, among possibly others, can be hypothesized to contribute to the near-zero phase-lag relationship: (1) positively correlated common input with no significant relative time delay and (2) bidirectional interaction. Thus far, no empirical test of these hypotheses has been possible for lack of means to tease apart the specific causes underlying the observed synchrony. In this work simulation examples were first used to illustrate the ideas. A quantitative method that decomposes the statistical interdependence between two cortical areas into a feed-forward, a feed-back and a common-input component was then introduced and applied to test the hypotheses on multichannel local field potential recordings from two behaving monkeys. Conclusion/Significance: The near-zero phase-lag phenomenon is important in the study of large-scale oscillatory networks. A rigorous mathematical theorem is used for the first time to empirically examine the factors that contribute to this phenomenon. Given the critical role that oscillatory activity is likely to play in the regulation of biological processes at all levels, the significance of the proposed method may extend beyond systems neuroscience, the level at which the present analysis is conceived and performed.

Suggested Citation

  • Rajasimhan Rajagovindan & Mingzhou Ding, 2008. "Decomposing Neural Synchrony: Toward an Explanation for Near-Zero Phase-Lag in Cortical Oscillatory Networks," PLOS ONE, Public Library of Science, vol. 3(11), pages 1-8, November.
  • Handle: RePEc:plo:pone00:0003649
    DOI: 10.1371/journal.pone.0003649
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003649
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0003649&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0003649?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thilo Womelsdorf & Pascal Fries & Partha P. Mitra & Robert Desimone, 2006. "Gamma-band synchronization in visual cortex predicts speed of change detection," Nature, Nature, vol. 439(7077), pages 733-736, February.
    2. Pieter R. Roelfsema & Andreas K. Engel & Peter König & Wolf Singer, 1997. "Visuomotor integration is associated with zero time-lag synchronization among cortical areas," Nature, Nature, vol. 385(6612), pages 157-161, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Bin & Deng, Yun & Yu, Haitao & Guo, Xinmeng & Wang, Jiang, 2016. "Dependence of inter-neuronal effective connectivity on synchrony dynamics in neuronal network motifs," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 48-59.
    2. Adele Diederich & Annette Schomburg & Hans Colonius, 2012. "Saccadic Reaction Times to Audiovisual Stimuli Show Effects of Oscillatory Phase Reset," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    3. Andrea Alamia & Rufin VanRullen, 2019. "Alpha oscillations and traveling waves: Signatures of predictive coding?," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-26, October.
    4. Christian G Fink & Victoria Booth & Michal Zochowski, 2011. "Cellularly-Driven Differences in Network Synchronization Propensity Are Differentially Modulated by Firing Frequency," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    5. Andreas Wilmer & Marc de Lussanet & Markus Lappe, 2012. "Time-Delayed Mutual Information of the Phase as a Measure of Functional Connectivity," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-22, September.
    6. Michael N Economo & John A White, 2012. "Membrane Properties and the Balance between Excitation and Inhibition Control Gamma-Frequency Oscillations Arising from Feedback Inhibition," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-20, January.
    7. Dhanya Parameshwaran & Upinder S Bhalla, 2013. "Theta Frequency Background Tunes Transmission but Not Summation of Spiking Responses," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    8. Ashok Litwin-Kumar & Maurice J Chacron & Brent Doiron, 2012. "The Spatial Structure of Stimuli Shapes the Timescale of Correlations in Population Spiking Activity," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-15, September.
    9. Biyu J He & John M Zempel, 2013. "Average Is Optimal: An Inverted-U Relationship between Trial-to-Trial Brain Activity and Behavioral Performance," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    10. Takayuki Onojima & Takahiro Goto & Hiroaki Mizuhara & Toshio Aoyagi, 2018. "A dynamical systems approach for estimating phase interactions between rhythms of different frequencies from experimental data," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-20, January.
    11. David Hall & Levin Kuhlmann, 2013. "Mechanisms of Seizure Propagation in 2-Dimensional Centre-Surround Recurrent Networks," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-21, August.
    12. Farrera-Megchun, Agustin & Padilla-Longoria, Pablo & Santos, Gerardo J. Escalera & Espinal-Enríquez, Jesús & Bernal-Jaquez, Roberto, 2024. "Neuron configuration enhances the synchronization dynamics in ring networks with heterogeneous firing patterns," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    13. Wu, Yong & Ding, Qianming & Huang, Weifang & Hu, Xueyan & Ye, Zhiqiu & Jia, Ya, 2024. "Dynamic modulation of external excitation enhance synchronization in complex neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    14. Mohan Raghavan & Bharadwaj Amrutur & Rishikesh Narayanan & Sujit Kumar Sikdar, 2013. "Synconset Waves and Chains: Spiking Onsets in Synchronous Populations Predict and Are Predicted by Network Structure," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-17, October.
    15. Wang, Jing & Ye, Weijie & Liu, Shenquan & Lu, Bo & Jiang, Xiaofang, 2016. "Qualitative and quantitative aspects of synchronization in coupled CA1 pyramidal neurons," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 32-38.
    16. Angela C E Onslow & Matthew W Jones & Rafal Bogacz, 2014. "A Canonical Circuit for Generating Phase-Amplitude Coupling," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    17. Cao, Haoyu & Yang, Zhiyin & Liu, Zonghua, 2023. "Remote synchronization in multi-layered community networks with star-like topology," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    18. Shilpa Chakravartula & Premananda Indic & Bala Sundaram & Timothy Killingback, 2017. "Emergence of local synchronization in neuronal networks with adaptive couplings," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-16, June.
    19. Cristian Carmeli & Laura Lopez-Aguado & Kerstin E Schmidt & Oscar De Feo & Giorgio M Innocenti, 2007. "A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas," PLOS ONE, Public Library of Science, vol. 2(12), pages 1-14, December.
    20. Erfan Zabeh & Nicholas C. Foley & Joshua Jacobs & Jacqueline P. Gottlieb, 2023. "Beta traveling waves in monkey frontal and parietal areas encode recent reward history," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0003649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.