IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v458y2009i7236d10.1038_nature07670.html
   My bibliography  Save this article

Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae

Author

Listed:
  • Joseph Schacherer

    (Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
    Present address: Department of Molecular Genetics, Genomics and Microbiology, Louis-Pasteur University and CNRS, UMR7156, Strasbourg 67083, France.)

  • Joshua A. Shapiro

    (Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA)

  • Douglas M. Ruderfer

    (Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA)

  • Leonid Kruglyak

    (Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA)

Abstract

Of yeast and man Baker's yeast, Saccharomyces cerevisiae, is one of the best studied model organisms, and has been associated with human activity for thousands of years. Two papers published in the 19 March 2009 issue of Nature provide a picture of its population structure and its relationship with other yeasts. Liti et al. compare genome variation in S. cerevisiae isolates with its closest wild cousin, S. paradoxus, which has never been associated with human activity. They find that variation in S. paradoxus closely follows geographic borders; S. cerevisiae shows less differentiation, consistent with opportunities for cross-breeding, rather than a few distinct domestication events, as the main human influence. Schacherer et al. compare 63 S. cerevisiae isolates from different ecological niches and geographic locations. They find evidence for genetic differentiation of three distinct subgroups based on where the strains were isolated: from vineyards, sake and related fermentations and lab strains. Their data support the hypothesis that these three groups represent separate domestication events, and that S. cerevisiae as a whole is not domesticated.

Suggested Citation

  • Joseph Schacherer & Joshua A. Shapiro & Douglas M. Ruderfer & Leonid Kruglyak, 2009. "Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae," Nature, Nature, vol. 458(7236), pages 342-345, March.
  • Handle: RePEc:nat:nature:v:458:y:2009:i:7236:d:10.1038_nature07670
    DOI: 10.1038/nature07670
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07670
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carole Camarasa & Isabelle Sanchez & Pascale Brial & Frédéric Bigey & Sylvie Dequin, 2011. "Phenotypic Landscape of Saccharomyces cerevisiae during Wine Fermentation: Evidence for Origin-Dependent Metabolic Traits," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-12, September.
    2. Masel, Joanna & Lyttle, David N., 2011. "The consequences of rare sexual reproduction by means of selfing in an otherwise clonally reproducing species," Theoretical Population Biology, Elsevier, vol. 80(4), pages 317-322.
    3. Hyosik Jang & Ian M Ehrenreich, 2012. "Genome-Wide Characterization of Genetic Variation in the Unicellular, Green Alga Chlamydomonas reinhardtii," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    4. J Roman Arguello & Carolina Sellanes & Yann Ru Lou & Robert A Raguso, 2013. "Can Yeast (S. cerevisiae) Metabolic Volatiles Provide Polymorphic Signaling?," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-12, August.
    5. Inês Mendes & Ricardo Franco-Duarte & Lan Umek & Elza Fonseca & João Drumonde-Neves & Sylvie Dequin & Blaz Zupan & Dorit Schuller, 2013. "Computational Models for Prediction of Yeast Strain Potential for Winemaking from Phenotypic Profiles," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:458:y:2009:i:7236:d:10.1038_nature07670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.