IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0035742.html
   My bibliography  Save this article

Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East China

Author

Listed:
  • Wenzel Kröber
  • Martin Böhnke
  • Erik Welk
  • Christian Wirth
  • Helge Bruelheide

Abstract

Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most responsive ones.

Suggested Citation

  • Wenzel Kröber & Martin Böhnke & Erik Welk & Christian Wirth & Helge Bruelheide, 2012. "Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East China," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-11, April.
  • Handle: RePEc:plo:pone00:0035742
    DOI: 10.1371/journal.pone.0035742
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035742
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0035742&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0035742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dray, Stéphane & Dufour, Anne-Béatrice, 2007. "The ade4 Package: Implementing the Duality Diagram for Ecologists," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 22(i04).
    2. R. McNeill Alexander, 1997. "Leaning trees on sloping ground," Nature, Nature, vol. 386(6623), pages 327-328, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Quan & Wen, Zhi & Wu, Tong & Zheng, Tianchen & Yang, Yanzheng & Li, Ruonan & Zheng, Hua, 2022. "Trade-offs and synergies of forest ecosystem services from the perspective of plant functional traits: A systematic review," Ecosystem Services, Elsevier, vol. 58(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengfei Song & Wen Qin & YanGan Huang & Lei Wang & Zhenyuan Cai & Tongzuo Zhang, 2020. "Grazing Management Influences Gut Microbial Diversity of Livestock in the Same Area," Sustainability, MDPI, vol. 12(10), pages 1-12, May.
    2. la Grange, Anthony & le Roux, Niël & Gardner-Lubbe, Sugnet, 2009. "BiplotGUI: Interactive Biplots in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 30(i12).
    3. Jonas Eberle & Renier Myburgh & Dirk Ahrens, 2014. "The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-16, May.
    4. Liesbeth François & Katrien Wijnrocx & Frédéric G Colinet & Nicolas Gengler & Bettine Hulsegge & Jack J Windig & Nadine Buys & Steven Janssens, 2017. "Genomics of a revived breed: Case study of the Belgian campine cattle," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    5. Hammond, Jim & Rosenblum, Nathaniel & Breseman, Dana & Gorman, Léo & Manners, Rhys & van Wijk, Mark T. & Sibomana, Milindi & Remans, Roseline & Vanlauwe, Bernard & Schut, Marc, 2020. "Towards actionable farm typologies: Scaling adoption of agricultural inputs in Rwanda," Agricultural Systems, Elsevier, vol. 183(C).
    6. Calenge, Clément, 2007. "Exploring Habitat Selection by Wildlife with adehabitat," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 22(i06).
    7. Sara Rachik & Urania Christaki & Luen Luen Li & Savvas Genitsaris & Elsa Breton & Sébastien Monchy, 2018. "Diversity and potential activity patterns of planktonic eukaryotic microbes in a mesoeutrophic coastal area (eastern English Channel)," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-26, May.
    8. Serra W. Buchanan & Megan Baskerville & Maren Oelbermann & Andrew M. Gordon & Naresh V. Thevathasan & Marney E. Isaac, 2020. "Plant Diversity and Agroecosystem Function in Riparian Agroforests: Providing Ecosystem Services and Land-Use Transition," Sustainability, MDPI, vol. 12(2), pages 1-12, January.
    9. Catharine Prussing & Kevin J Emerson & Sara A Bickersmith & Maria Anice Mureb Sallum & Jan E Conn, 2019. "Minimal genetic differentiation of the malaria vector Nyssorhynchus darlingi associated with forest cover level in Amazonian Brazil," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-16, November.
    10. Anna Favati & Josefina Zidar & Hanne Thorpe & Per Jensen & Hanne Løvlie, 2016. "The ontogeny of personality traits in the red junglefowl, Gallus gallus," Behavioral Ecology, International Society for Behavioral Ecology, vol. 27(2), pages 484-493.
    11. repec:jss:jstsof:22:i01 is not listed on IDEAS
    12. Luca Freschi & Roger Vargas & Ashaque Husain & S. M. Mostofa Kamal & Alena Skrahina & Sabira Tahseen & Nazir Ismail & Anna Barbova & Stefan Niemann & Daniela Maria Cirillo & Anna S. Dean & Matteo Zign, 2021. "Population structure, biogeography and transmissibility of Mycobacterium tuberculosis," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    13. Sólymos, Péter, 2009. "Processing Ecological Data in R with the mefa Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i08).
    14. Alessandro Bellino & Daniela Baldantoni & Vittoria Milano & Lucia Santorufo & Jérôme Cortet & Giulia Maisto, 2021. "Spatial Patterns and Scales of Collembola Taxonomic and Functional Diversity in Urban Parks," Sustainability, MDPI, vol. 13(23), pages 1-11, November.
    15. Keith Hunley & Kiela Gwin & Brendan Liberman, 2016. "A Reassessment of the Impact of European Contact on the Structure of Native American Genetic Diversity," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-17, August.
    16. Vasilios Liordos & Jukka Jokimäki & Marja-Liisa Kaisanlahti-Jokimäki & Evangelos Valsamidis & Vasileios J. Kontsiotis, 2021. "Niche Analysis and Conservation of Bird Species Using Urban Core Areas," Sustainability, MDPI, vol. 13(11), pages 1-15, June.
    17. María Concepción Vega-Hernández & Carmen Patino-Alonso, 2021. "Comparing COSTATIS and Generalized Procrustes Analysis with Multi-Way Public Education Expenditure Data," Mathematics, MDPI, vol. 9(15), pages 1-13, July.
    18. Jean-Pierre Rossi & Maxime Nardin & Martin Godefroid & Manuela Ruiz-Diaz & Anne-Sophie Sergent & Alejandro Martinez-Meier & Luc Pâques & Philippe Rozenberg, 2014. "Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    19. Marta Teston & Matteo Orsi & Giovanni Bittante & Alessio Cecchinato & Luigi Gallo & Paola Gatto & Lucio Flavio Macedo Mota & Maurizio Ramanzin & Salvatore Raniolo & Antonella Tormen & Enrico Sturaro, 2022. "Added Value of Local Sheep Breeds in Alpine Agroecosystems," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    20. Colléter, Mathieu & Valls, Audrey & Guitton, Jérôme & Gascuel, Didier & Pauly, Daniel & Christensen, Villy, 2015. "Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository," Ecological Modelling, Elsevier, vol. 302(C), pages 42-53.
    21. Hui, Francis K.C., 2017. "Model-based simultaneous clustering and ordination of multivariate abundance data in ecology," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 1-10.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0035742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.