IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000010.html
   My bibliography  Save this article

A Novel Bayesian DNA Motif Comparison Method for Clustering and Retrieval

Author

Listed:
  • Naomi Habib
  • Tommy Kaplan
  • Hanah Margalit
  • Nir Friedman

Abstract

Characterizing the DNA-binding specificities of transcription factors is a key problem in computational biology that has been addressed by multiple algorithms. These usually take as input sequences that are putatively bound by the same factor and output one or more DNA motifs. A common practice is to apply several such algorithms simultaneously to improve coverage at the price of redundancy. In interpreting such results, two tasks are crucial: clustering of redundant motifs, and attributing the motifs to transcription factors by retrieval of similar motifs from previously characterized motif libraries. Both tasks inherently involve motif comparison. Here we present a novel method for comparing and merging motifs, based on Bayesian probabilistic principles. This method takes into account both the similarity in positional nucleotide distributions of the two motifs and their dissimilarity to the background distribution. We demonstrate the use of the new comparison method as a basis for motif clustering and retrieval procedures, and compare it to several commonly used alternatives. Our results show that the new method outperforms other available methods in accuracy and sensitivity. We incorporated the resulting motif clustering and retrieval procedures in a large-scale automated pipeline for analyzing DNA motifs. This pipeline integrates the results of various DNA motif discovery algorithms and automatically merges redundant motifs from multiple training sets into a coherent annotated library of motifs. Application of this pipeline to recent genome-wide transcription factor location data in S. cerevisiae successfully identified DNA motifs in a manner that is as good as semi-automated analysis reported in the literature. Moreover, we show how this analysis elucidates the mechanisms of condition-specific preferences of transcription factors.Author Summary: Regulation of gene expression plays a central role in the activity of living cells and in their response to internal (e.g., cell division) or external (e.g., stress) stimuli. Key players in determining gene-specific regulation are transcription factors that bind sequence-specific sites on the DNA, modulating the expression of nearby genes. To understand the regulatory program of the cell, we need to identify these transcription factors, when they act, and on which genes. Transcription regulatory maps can be assembled by computational analysis of experimental data, by discovering the DNA recognition sequences (motifs) of transcription factors and their occurrences along the genome. Such an analysis usually results in a large number of overlapping motifs. To reconstruct regulatory maps, it is crucial to combine similar motifs and to relate them to transcription factors. To this end we developed an accurate fully-automated method, termed BLiC, based upon an improved similarity measure for comparing DNA motifs. By applying it to genome-wide data in yeast, we identified the DNA motifs of transcription factors and their putative target genes. Finally, we analyze motifs of transcription factor that alter their target genes under different conditions, and show how cells adjust their regulatory program in response to environmental changes.

Suggested Citation

  • Naomi Habib & Tommy Kaplan & Hanah Margalit & Nir Friedman, 2008. "A Novel Bayesian DNA Motif Comparison Method for Clustering and Retrieval," PLOS Computational Biology, Public Library of Science, vol. 4(2), pages 1-16, February.
  • Handle: RePEc:plo:pcbi00:1000010
    DOI: 10.1371/journal.pcbi.1000010
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000010
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000010&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaohui Xie & Jun Lu & E. J. Kulbokas & Todd R. Golub & Vamsi Mootha & Kerstin Lindblad-Toh & Eric S. Lander & Manolis Kellis, 2005. "Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals," Nature, Nature, vol. 434(7031), pages 338-345, March.
    2. Christopher T. Harbison & D. Benjamin Gordon & Tong Ihn Lee & Nicola J. Rinaldi & Kenzie D. Macisaac & Timothy W. Danford & Nancy M. Hannett & Jean-Bosco Tagne & David B. Reynolds & Jane Yoo & Ezra G., 2004. "Transcriptional regulatory code of a eukaryotic genome," Nature, Nature, vol. 431(7004), pages 99-104, September.
    3. Manolis Kellis & Nick Patterson & Matthew Endrizzi & Bruce Birren & Eric S. Lander, 2003. "Sequencing and comparison of yeast species to identify genes and regulatory elements," Nature, Nature, vol. 423(6937), pages 241-254, May.
    4. Kenzie D MacIsaac & Ernest Fraenkel, 2006. "Practical Strategies for Discovering Regulatory DNA Sequence Motifs," PLOS Computational Biology, Public Library of Science, vol. 2(4), pages 1-10, April.
    5. Shaun Mahony & Philip E Auron & Panayiotis V Benos, 2007. "DNA Familial Binding Profiles Made Easy: Comparison of Various Motif Alignment and Clustering Strategies," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harri Lähdesmäki & Alistair G Rust & Ilya Shmulevich, 2008. "Probabilistic Inference of Transcription Factor Binding from Multiple Data Sources," PLOS ONE, Public Library of Science, vol. 3(3), pages 1-24, March.
    2. Rahul Siddharthan & Eric D Siggia & Erik van Nimwegen, 2005. "PhyloGibbs: A Gibbs Sampling Motif Finder That Incorporates Phylogeny," PLOS Computational Biology, Public Library of Science, vol. 1(7), pages 1-23, December.
    3. Leelavati Narlikar & Raluca Gordân & Alexander J Hartemink, 2007. "A Nucleosome-Guided Map of Transcription Factor Binding Sites in Yeast," PLOS Computational Biology, Public Library of Science, vol. 3(11), pages 1-10, November.
    4. Eilon Sharon & Shai Lubliner & Eran Segal, 2008. "A Feature-Based Approach to Modeling Protein–DNA Interactions," PLOS Computational Biology, Public Library of Science, vol. 4(8), pages 1-17, August.
    5. Kenzie D MacIsaac & Ernest Fraenkel, 2006. "Practical Strategies for Discovering Regulatory DNA Sequence Motifs," PLOS Computational Biology, Public Library of Science, vol. 2(4), pages 1-10, April.
    6. Shubin W Shahab & Lilya V Matyunina & Roman Mezencev & L DeEtte Walker & Nathan J Bowen & Benedict B Benigno & John F McDonald, 2011. "Evidence for the Complexity of MicroRNA-Mediated Regulation in Ovarian Cancer: A Systems Approach," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-12, July.
    7. Ana Helena Tavares & Jakob Raymaekers & Peter J. Rousseeuw & Paula Brito & Vera Afreixo, 2020. "Clustering genomic words in human DNA using peaks and trends of distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 57-76, March.
    8. Matvei Khoroshkin & Andrey Buyan & Martin Dodel & Albertas Navickas & Johnny Yu & Fathima Trejo & Anthony Doty & Rithvik Baratam & Shaopu Zhou & Sean B. Lee & Tanvi Joshi & Kristle Garcia & Benedict C, 2024. "Systematic identification of post-transcriptional regulatory modules," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. Tao Song & Hong Gu, 2014. "Discriminative Motif Discovery via Simulated Evolution and Random Under-Sampling," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
    10. Zing Tsung-Yeh Tsai & Shin-Han Shiu & Huai-Kuang Tsai, 2015. "Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-22, August.
    11. Gross, Eitan, 2015. "Effect of environmental stress on regulation of gene expression in the yeast," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 224-235.
    12. Andrew K Miller & Cristin G Print & Poul M F Nielsen & Edmund J Crampin, 2010. "A Bayesian Search for Transcriptional Motifs," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-7, November.
    13. Alexander Kawrykow & Gary Roumanis & Alfred Kam & Daniel Kwak & Clarence Leung & Chu Wu & Eleyine Zarour & Phylo players & Luis Sarmenta & Mathieu Blanchette & Jérôme Waldispühl, 2012. "Phylo: A Citizen Science Approach for Improving Multiple Sequence Alignment," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-9, March.
    14. Armita Nourmohammad & Michael Lässig, 2011. "Formation of Regulatory Modules by Local Sequence Duplication," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-12, October.
    15. Kihoon Yoon & Daijin Ko & Carolina B. Livi & Nathan Trinklein & Mark Doderer & Stephen Kwek & Luiz O. F. Penalva, 2008. "Over-represented sequences located on UTRs are potentially involved in regulatory functions," Working Papers 0053, College of Business, University of Texas at San Antonio.
    16. Alessandro L. V. Coradini & Christopher Ne Ville & Zachary A. Krieger & Joshua Roemer & Cara Hull & Shawn Yang & Daniel T. Lusk & Ian M. Ehrenreich, 2023. "Building synthetic chromosomes from natural DNA," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Wei-Sheng Wu & Fu-Jou Lai, 2016. "Detecting Cooperativity between Transcription Factors Based on Functional Coherence and Similarity of Their Target Gene Sets," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-12, September.
    18. Valerie Storms & Marleen Claeys & Aminael Sanchez & Bart De Moor & Annemieke Verstuyf & Kathleen Marchal, 2010. "The Effect of Orthology and Coregulation on Detecting Regulatory Motifs," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-11, February.
    19. Robert K Bradley & Adam Roberts & Michael Smoot & Sudeep Juvekar & Jaeyoung Do & Colin Dewey & Ian Holmes & Lior Pachter, 2009. "Fast Statistical Alignment," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-15, May.
    20. Jens Keilwagen & Jan Grau & Ivan A Paponov & Stefan Posch & Marc Strickert & Ivo Grosse, 2011. "De-Novo Discovery of Differentially Abundant Transcription Factor Binding Sites Including Their Positional Preference," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-13, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.