IDEAS home Printed from https://ideas.repec.org/a/plo/ppat00/1006663.html
   My bibliography  Save this article

Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus

Author

Listed:
  • Mohammed Atif
  • Argel Estrada-Mondragon
  • Bindi Nguyen
  • Joseph W Lynch
  • Angelo Keramidas

Abstract

Ivermectin (IVM) is a widely-used anthelmintic that works by binding to and activating glutamate-gated chloride channel receptors (GluClRs) in nematodes. The resulting chloride flux inhibits the pharyngeal muscle cells and motor neurons of nematodes, causing death by paralysis or starvation. IVM resistance is an emerging problem in many pest species, necessitating the development of novel drugs. However, drug optimisation requires a quantitative understanding of GluClR activation and modulation mechanisms. Here we investigated the biophysical properties of homomeric α (avr-14b) GluClRs from the parasitic nematode, H. contortus, in the presence of glutamate and IVM. The receptor proved to be highly responsive to low nanomolar concentrations of both compounds. Analysis of single receptor activations demonstrated that the GluClR oscillates between multiple functional states upon the binding of either ligand. The G36’A mutation in the third transmembrane domain, which was previously thought to hinder access of IVM to its binding site, was found to decrease the duration of active periods and increase receptor desensitisation. On an ensemble macropatch level the mutation gave rise to enhanced current decay and desensitisation rates. Because these responses were common to both glutamate and IVM, and were observed under conditions where agonist binding sites were likely saturated, we infer that G36’A affects the intrinsic properties of the receptor with no specific effect on IVM binding mechanisms. These unexpected results provide new insights into the activation and modulatory mechanisms of the H. contortus GluClRs and provide a mechanistic framework upon which the actions of drugs can be reliably interpreted.Author summary: IVM is a gold standard anti-parasitic drug that is used extensively to control invertebrate parasites pest species. The drug targets the glutamate-gated chloride channel receptor (GluClR) found on neurons and muscle cells of these organisms, causing paralysis and death. However, IVM resistance is becoming a serious problem in human and animal health, as well as human food production. We provide the first comprehensive investigation of the functional properties of the GluClR of H. contortus, which is a major parasite in grazing animals, such as sheep and goats. We compared glutamate and IVM induced activity of the wild-type and a mutant GluClR, G36’A, that markedly reduces IVM sensitivity in wild populations of pests. Our data demonstrate that the mutation reduces IVM sensitivity by altering the functional properties of the GluClR rather than specifically affecting the binding of IVM, even though the mutation occurs at the IVM binding site. This study provides a mechanistic framework upon which the actions of new candidate anthelmintic drugs can be interpreted.

Suggested Citation

  • Mohammed Atif & Argel Estrada-Mondragon & Bindi Nguyen & Joseph W Lynch & Angelo Keramidas, 2017. "Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus," PLOS Pathogens, Public Library of Science, vol. 13(10), pages 1-30, October.
  • Handle: RePEc:plo:ppat00:1006663
    DOI: 10.1371/journal.ppat.1006663
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006663
    Download Restriction: no

    File URL: https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1006663&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.ppat.1006663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claudio Grosman & Ming Zhou & Anthony Auerbach, 2000. "Mapping the conformational wave of acetylcholine receptor channel gating," Nature, Nature, vol. 403(6771), pages 773-776, February.
    2. Seok-Yong Lee & Roderick MacKinnon, 2004. "A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom," Nature, Nature, vol. 430(6996), pages 232-235, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Do Hoon Kwon & Feng Zhang & Justin G. Fedor & Yang Suo & Seok-Yong Lee, 2022. "Vanilloid-dependent TRPV1 opening trajectory from cryoEM ensemble analysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. David Mowrey & Qiang Chen & Yuhe Liang & Jie Liang & Yan Xu & Pei Tang, 2013. "Signal Transduction Pathways in the Pentameric Ligand-Gated Ion Channels," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    3. Dinesh C Indurthi & Trevor M Lewis & Philip K Ahring & Thomas Balle & Mary Chebib & Nathan L Absalom, 2016. "Ligand Binding at the α4-α4 Agonist-Binding Site of the α4β2 nAChR Triggers Receptor Activation through a Pre-Activated Conformational State," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:ppat00:1006663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plospathogens (email available below). General contact details of provider: https://journals.plos.org/plospathogens .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.