IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0062380.html
   My bibliography  Save this article

Simulation of E. coli Gene Regulation including Overlapping Cell Cycles, Growth, Division, Time Delays and Noise

Author

Listed:
  • Ruoyu Luo
  • Lin Ye
  • Chenyang Tao
  • Kankan Wang

Abstract

Due to the complexity of biological systems, simulation of biological networks is necessary but sometimes complicated. The classic stochastic simulation algorithm (SSA) by Gillespie and its modified versions are widely used to simulate the stochastic dynamics of biochemical reaction systems. However, it has remained a challenge to implement accurate and efficient simulation algorithms for general reaction schemes in growing cells. Here, we present a modeling and simulation tool, called ‘GeneCircuits’, which is specifically developed to simulate gene-regulation in exponentially growing bacterial cells (such as E. coli) with overlapping cell cycles. Our tool integrates three specific features of these cells that are not generally included in SSA tools: 1) the time delay between the regulation and synthesis of proteins that is due to transcription and translation processes; 2) cell cycle-dependent periodic changes of gene dosage; and 3) variations in the propensities of chemical reactions that have time-dependent reaction rates as a consequence of volume expansion and cell division. We give three biologically relevant examples to illustrate the use of our simulation tool in quantitative studies of systems biology and synthetic biology.

Suggested Citation

  • Ruoyu Luo & Lin Ye & Chenyang Tao & Kankan Wang, 2013. "Simulation of E. coli Gene Regulation including Overlapping Cell Cycles, Growth, Division, Time Delays and Noise," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
  • Handle: RePEc:plo:pone00:0062380
    DOI: 10.1371/journal.pone.0062380
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062380
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0062380&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0062380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gürol M. Süel & Jordi Garcia-Ojalvo & Louisa M. Liberman & Michael B. Elowitz, 2006. "An excitable gene regulatory circuit induces transient cellular differentiation," Nature, Nature, vol. 440(7083), pages 545-550, March.
    2. Johan Paulsson, 2004. "Summing up the noise in gene networks," Nature, Nature, vol. 427(6973), pages 415-418, January.
    3. Erez Dekel & Uri Alon, 2005. "Optimality and evolutionary tuning of the expression level of a protein," Nature, Nature, vol. 436(7050), pages 588-592, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin B Kaufmann & Qiong Yang & Jerome T Mettetal & Alexander van Oudenaarden, 2007. "Heritable Stochastic Switching Revealed by Single-Cell Genealogy," PLOS Biology, Public Library of Science, vol. 5(9), pages 1-8, September.
    2. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    3. Zihan Wang & Akshit Goyal & Veronika Dubinkina & Ashish B. George & Tong Wang & Yulia Fridman & Sergei Maslov, 2021. "Complementary resource preferences spontaneously emerge in diauxic microbial communities," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    5. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    6. Lee, Julian, 2023. "Poisson distributions in stochastic dynamics of gene expression: What events do they count?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    7. Matthieu Wyart & David Botstein & Ned S Wingreen, 2010. "Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    8. Sandra H Dandach & Mustafa Khammash, 2010. "Analysis of Stochastic Strategies in Bacterial Competence: A Master Equation Approach," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-11, November.
    9. Karin Münch & Richard Münch & Rebekka Biedendieck & Dieter Jahn & Johannes Müller, 2019. "Evolutionary model for the unequal segregation of high copy plasmids," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-17, March.
    10. Kyung H Kim & Herbert M Sauro, 2012. "Adjusting Phenotypes by Noise Control," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-14, January.
    11. Jérémie Bourdon & Damien Eveillard & Anne Siegel, 2011. "Integrating Quantitative Knowledge into a Qualitative Gene Regulatory Network," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-11, September.
    12. Payne, Joshua L., 2016. "No tradeoff between versatility and robustness in gene circuit motifs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 192-199.
    13. David A Sivak & Matt Thomson, 2014. "Environmental Statistics and Optimal Regulation," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-12, September.
    14. Elijah Roberts & Andrew Magis & Julio O Ortiz & Wolfgang Baumeister & Zaida Luthey-Schulten, 2011. "Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-21, March.
    15. Keun-Young Kim & Jin Wang, 2007. "Potential Energy Landscape and Robustness of a Gene Regulatory Network: Toggle Switch," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-13, March.
    16. Margaritis Voliotis & Philipp Thomas & Ramon Grima & Clive G Bowsher, 2016. "Stochastic Simulation of Biomolecular Networks in Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-18, June.
    17. Luca Cardelli & Rosa D Hernansaiz-Ballesteros & Neil Dalchau & Attila Csikász-Nagy, 2017. "Efficient Switches in Biology and Computer Science," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-16, January.
    18. Chen, Aimin & Tian, Tianhai & Chen, Yiren & Zhou, Tianshou, 2022. "Stochastic analysis of a complex gene-expression model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    19. Yuval Elhanati & Naama Brenner, 2012. "Metabolic Variability in Micro-Populations," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-9, December.
    20. Rok Grah & Tamar Friedlander, 2020. "The relation between crosstalk and gene regulation form revisited," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-24, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0062380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.