IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000985.html
   My bibliography  Save this article

Analysis of Stochastic Strategies in Bacterial Competence: A Master Equation Approach

Author

Listed:
  • Sandra H Dandach
  • Mustafa Khammash

Abstract

Competence is a transiently differentiated state that certain bacterial cells reach when faced with a stressful environment. Entrance into competence can be attributed to the excitability of the dynamics governing the genetic circuit that regulates this cellular behavior. Like many biological behaviors, entrance into competence is a stochastic event. In this case cellular noise is responsible for driving the cell from a vegetative state into competence and back. In this work we present a novel numerical method for the analysis of stochastic biochemical events and use it to study the excitable dynamics responsible for competence in Bacillus subtilis. Starting with a Finite State Projection (FSP) solution of the chemical master equation (CME), we develop efficient numerical tools for accurately computing competence probability. Additionally, we propose a new approach for the sensitivity analysis of stochastic events and utilize it to elucidate the robustness properties of the competence regulatory genetic circuit. We also propose and implement a numerical method to calculate the expected time it takes a cell to return from competence. Although this study is focused on an example of cell-differentiation in Bacillus subtilis, our approach can be applied to a wide range of stochastic phenomena in biological systems.Author Summary: When exposed to stress, organisms react by taking actions that help them protect their DNA. ComK protein is a key regulator which activates hundreds of genes, including the genes encoding the DNA-uptake and recombination systems. In Bacillus subtilis, stress in the environment activates a sequence of chemical reactions that, driven by cellular noise, stochastically increases the level of ComK in some bacterial cells driving them from their original vegetative state into a competent state. Entrance into and exit from competence are stochastic switching events that the cell undergoes. In this work, we present a novel numerical method that allows the analysis of stochastic events in biological systems. We illustrate our method by computing the probability with which Bacillus subtilis enters in competence. We also present a method to analyze the sensitivity of stochastic events. We use this method to study the sensitivity of the probability of entrance in competence with respect to various gene expressions and degradation rates. We finally present a numerical method to calculate the expected time it takes a cell to return from competence. Although we studied the competence regulatory genetic circuit, our approach can be applied to a variety of stochastic events in biological systems.

Suggested Citation

  • Sandra H Dandach & Mustafa Khammash, 2010. "Analysis of Stochastic Strategies in Bacterial Competence: A Master Equation Approach," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-11, November.
  • Handle: RePEc:plo:pcbi00:1000985
    DOI: 10.1371/journal.pcbi.1000985
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000985
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000985&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weiss, George H. & Szabo, Attila, 1983. "First passage time problems for a class of master equations with separable kernels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 119(3), pages 569-579.
    2. Gürol M. Süel & Jordi Garcia-Ojalvo & Louisa M. Liberman & Michael B. Elowitz, 2006. "An excitable gene regulatory circuit induces transient cellular differentiation," Nature, Nature, vol. 440(7083), pages 545-550, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denisov, S.I. & Bystrik, Yu.S., 2019. "Statistics of bounded processes driven by Poisson white noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 38-46.
    2. Matthieu Wyart & David Botstein & Ned S Wingreen, 2010. "Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    3. Karin Münch & Richard Münch & Rebekka Biedendieck & Dieter Jahn & Johannes Müller, 2019. "Evolutionary model for the unequal segregation of high copy plasmids," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-17, March.
    4. Payne, Joshua L., 2016. "No tradeoff between versatility and robustness in gene circuit motifs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 192-199.
    5. Ruoyu Luo & Lin Ye & Chenyang Tao & Kankan Wang, 2013. "Simulation of E. coli Gene Regulation including Overlapping Cell Cycles, Growth, Division, Time Delays and Noise," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    6. Margaritis Voliotis & Philipp Thomas & Ramon Grima & Clive G Bowsher, 2016. "Stochastic Simulation of Biomolecular Networks in Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-18, June.
    7. Yu, Haiyan & Liu, Quansheng & Bi, Yuanhong, 2023. "Lévy noise-induced phase transition in p53 gene regulatory network near bifurcation points," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Kazunari Mouri & Yasushi Sako, 2013. "Optimality Conditions for Cell-Fate Heterogeneity That Maximize the Effects of Growth Factors in PC12 Cells," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-15, November.
    9. Greg J Stephens & Bethany Johnson-Kerner & William Bialek & William S Ryu, 2008. "Dimensionality and Dynamics in the Behavior of C. elegans," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-10, April.
    10. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    11. Cabrera Fernández, Juan Luis & Herrera-Almarza, Gioconda C. & Gutiérrez M., Esther D., 2018. "Chromosome progression and mitotic times behavior are mimicked by an stochastic unstable dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1121-1127.
    12. Zhao, Na & Liu, Haihong & Yan, Fang, 2020. "Oscillation dynamics of MeKS core module containing positive and negative feedback loops with time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    13. Song, Yi & Xu, Wei, 2021. "Asymmetric Lévy noise changed stability in a gene transcriptional regulatory system," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    14. Chen, Xiaoli & Wu, Fengyan & Duan, Jinqiao & Kurths, Jürgen & Li, Xiaofan, 2019. "Most probable dynamics of a genetic regulatory network under stable Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 425-436.
    15. Jiegen Wu & Baoqiang Chen & Yadi Liu & Liang Ma & Wen Huang & Yihan Lin, 2022. "Modulating gene regulation function by chemically controlled transcription factor clustering," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Benjamin B Kaufmann & Qiong Yang & Jerome T Mettetal & Alexander van Oudenaarden, 2007. "Heritable Stochastic Switching Revealed by Single-Cell Genealogy," PLOS Biology, Public Library of Science, vol. 5(9), pages 1-8, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.