IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0058327.html
   My bibliography  Save this article

The Mantel-Haenszel Procedure Revisited: Models and Generalizations

Author

Listed:
  • Vaclav Fidler
  • Nico Nagelkerke

Abstract

Several statistical methods have been developed for adjusting the Odds Ratio of the relation between two dichotomous variables X and Y for some confounders Z. With the exception of the Mantel-Haenszel method, commonly used methods, notably binary logistic regression, are not symmetrical in X and Y. The classical Mantel-Haenszel method however only works for confounders with a limited number of discrete strata, which limits its utility, and appears to have no basis in statistical models. Here we revisit the Mantel-Haenszel method and propose an extension to continuous and vector valued Z. The idea is to replace the observed cell entries in strata of the Mantel-Haenszel procedure by subject specific classification probabilities for the four possible values of (X,Y) predicted by a suitable statistical model. For situations where X and Y can be treated symmetrically we propose and explore the multinomial logistic model. Under the homogeneity hypothesis, which states that the odds ratio does not depend on Z, the logarithm of the odds ratio estimator can be expressed as a simple linear combination of three parameters of this model. Methods for testing the homogeneity hypothesis are proposed. The relationship between this method and binary logistic regression is explored. A numerical example using survey data is presented.

Suggested Citation

  • Vaclav Fidler & Nico Nagelkerke, 2013. "The Mantel-Haenszel Procedure Revisited: Models and Generalizations," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-4, March.
  • Handle: RePEc:plo:pone00:0058327
    DOI: 10.1371/journal.pone.0058327
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0058327
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0058327&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0058327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. le Cessie & J. C. van Houwelingen, 1994. "Logistic Regression for Correlated Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 95-108, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dwivedi Alok Kumar & Mallawaarachchi Indika & Figueroa-Casas Juan B. & Morales Angel M. & Tarwater Patrick, 2015. "Multinomial Logistic Regression Approach for the Evaluation of Binary Diagnostic Test in Medical Research," Statistics in Transition New Series, Polish Statistical Association, vol. 16(2), pages 203-222, June.
    2. Angel M. Morales & Patrick Tarwater & Indika Mallawaarachchi & Alok Kumar Dwivedi & Juan B. Figueroa-Casas, 2015. "Multinomial logistic regression approach for the evaluation of binary diagnostic test in medical research," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(2), pages 203-222, June.
    3. Alok Kumar Dwivedi & Indika Mallawaarachchi & Juan B. Figueroa-Casas & Angel M. Morales & Patrick Tarwater, 2015. "Multinomial Logistic Regression Approach For The Evaluation Of Binary Diagnostic Test In Medical Research," Statistics in Transition New Series, Polish Statistical Association, vol. 16(2), pages 203-222, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paik, Jane & Ying, Zhiliang, 2012. "A composite likelihood approach for spatially correlated survival data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 209-216, January.
    2. M.-L. Feddag, 2016. "Pairwise likelihood estimation for the normal ogive model with binary data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(2), pages 223-237, April.
    3. Renard, Didier & Molenberghs, Geert & Geys, Helena, 2004. "A pairwise likelihood approach to estimation in multilevel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 649-667, January.
    4. Johan Verbeeck & Martin Geroldinger & Konstantin Thiel & Andrew Craig Hooker & Sebastian Ueckert & Mats Karlsson & Arne Cornelius Bathke & Johann Wolfgang Bauer & Geert Molenberghs & Georg Zimmermann, 2023. "How to analyze continuous and discrete repeated measures in small‐sample cross‐over trials?," Biometrics, The International Biometric Society, vol. 79(4), pages 3998-4011, December.
    5. Lajmi Lakhal-Chaieb & Thierry Duchesne, 2017. "Association measures for bivariate failure times in the presence of a cure fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 517-532, October.
    6. Peng, Cheng & Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2022. "Latent Gaussian copula models for longitudinal binary data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Shujie Ma & Yanyuan Ma & Yanqing Wang & Eli S. Kravitz & Raymond J. Carroll, 2017. "A Semiparametric Single-Index Risk Score Across Populations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1648-1662, October.
    8. Kuk, Anthony Y. C. & Nott, David J., 2000. "A pairwise likelihood approach to analyzing correlated binary data," Statistics & Probability Letters, Elsevier, vol. 47(4), pages 329-335, May.
    9. Taha Hossein Rashidi & Matthew J. Roorda, 2018. "A business establishment fleet ownership and composition model," Transportation, Springer, vol. 45(3), pages 971-987, May.
    10. Hatzikyriakou, Adam & Lin, Ning, 2017. "Impact of performance interdependencies on structural vulnerability: A systems perspective of storm surge risk to coastal residential communities," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 106-116.
    11. Yang Wu & Malay Ghosh, 2017. "Asymptotic Expansion of the Posterior Based on Pairwise Likelihood," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 39-75, February.
    12. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    13. Wimhurst, Joshua J. & Greene, J. Scott & Koch, Jennifer, 2023. "Predicting commercial wind farm site suitability in the conterminous United States using a logistic regression model," Applied Energy, Elsevier, vol. 352(C).
    14. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    15. Reem Aljarallah & Samer A Kharroubi, 2021. "Use of Bayesian Markov Chain Monte Carlo Methods to Model Kuwait Medical Genetic Center Data: An Application to Down Syndrome and Mental Retardation," Mathematics, MDPI, vol. 9(3), pages 1-11, January.
    16. Olfa KAMMOUN & Mohieddine RAHMOUNI, 2013. "Intellectual Property Rights, Appropriation Instruments and Innovation Activities: Evidence from Tunisian Firms," Cahiers du GREThA (2007-2019) 2013-01, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    17. Feddag, M.-L. & Bacci, S., 2009. "Pairwise likelihood for the longitudinal mixed Rasch model," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1027-1037, February.
    18. Euán, Carolina & Sun, Ying, 2020. "Bernoulli vector autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    19. Bryan Ting & Fred Wright & Yi-Hui Zhou, 2022. "Fast Multivariate Probit Estimation via a Two-Stage Composite Likelihood," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 533-549, December.
    20. Spiess, Martin & Hamerle, Alfred, 2000. "A comparison of different methods for the estimation of regression models with correlated binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 33(4), pages 439-455, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0058327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.