IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v79y2017i1d10.1007_s13171-016-0094-y.html
   My bibliography  Save this article

Asymptotic Expansion of the Posterior Based on Pairwise Likelihood

Author

Listed:
  • Yang Wu

    (American Express Company)

  • Malay Ghosh

    (University of Florida)

Abstract

This paper provides an asymptotic expansion of the posterior based on pairwise likelihood instead of the regular likelihood. The celebrated Bernstein-von Mises theorem is derived as a special case. A multiparameter version of the asymptotic expansion is also given involving nuisance parameters. As a direct application of these expansions, one can obtain moment matching priors and quantile matching priors with or without nuisance parameters. A simulation study is provided verifying this agreement between frequentist quantiles and Bayesian quantiles using quantile matching priors. One of the major tools used in this paper is strong consistency of the maximum pairwise likelihood estimator (MPLE).

Suggested Citation

  • Yang Wu & Malay Ghosh, 2017. "Asymptotic Expansion of the Posterior Based on Pairwise Likelihood," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 39-75, February.
  • Handle: RePEc:spr:sankha:v:79:y:2017:i:1:d:10.1007_s13171-016-0094-y
    DOI: 10.1007/s13171-016-0094-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-016-0094-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-016-0094-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    2. S. le Cessie & J. C. van Houwelingen, 1994. "Logistic Regression for Correlated Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 95-108, March.
    3. D. R. Cox, 2004. "A note on pseudolikelihood constructed from marginal densities," Biometrika, Biometrika Trust, vol. 91(3), pages 729-737, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paik, Jane & Ying, Zhiliang, 2012. "A composite likelihood approach for spatially correlated survival data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 209-216, January.
    2. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    3. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    4. Paleti, Rajesh & Bhat, Chandra R., 2013. "The composite marginal likelihood (CML) estimation of panel ordered-response models," Journal of choice modelling, Elsevier, vol. 7(C), pages 24-43.
    5. M.-L. Feddag, 2016. "Pairwise likelihood estimation for the normal ogive model with binary data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(2), pages 223-237, April.
    6. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    7. Lee Fawcett & David Walshaw, 2014. "Estimating the probability of simultaneous rainfall extremes within a region: a spatial approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 959-976, May.
    8. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    9. Nobel, Anne & Lizin, Sebastien & Malina, Robert, 2023. "What drives the designation of protected areas? Accounting for spatial dependence using a composite marginal likelihood approach," Ecological Economics, Elsevier, vol. 205(C).
    10. Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2012. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers 12003, Concordia University, Department of Economics.
    11. A. Philip Dawid & Monica Musio & Laura Ventura, 2016. "Minimum Scoring Rule Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 123-138, March.
    12. Gourieroux, C. & Monfort, A., 2018. "Composite indirect inference with application to corporate risks," Econometrics and Statistics, Elsevier, vol. 7(C), pages 30-45.
    13. Papageorgiou, Ioulia & Moustaki, Irini, 2019. "Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables," LSE Research Online Documents on Economics 87592, London School of Economics and Political Science, LSE Library.
    14. Ana-Maria Staicu, 2017. "Interview with Nancy Reid," International Statistical Review, International Statistical Institute, vol. 85(3), pages 381-403, December.
    15. Fangya Mao & Richard J. Cook, 2023. "Spatial dependence modeling of latent susceptibility and time to joint damage in psoriatic arthritis," Biometrics, The International Biometric Society, vol. 79(3), pages 2605-2618, September.
    16. K. Florios & I. Moustaki & D. Rizopoulos & V. Vasdekis, 2015. "A modified weighted pairwise likelihood estimator for a class of random effects models," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 217-228, August.
    17. Ioulia Papageorgiou, 2016. "Sampling from Correlated Populations: Optimal Strategies and Comparison Study," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 119-151, May.
    18. Qiurong Cui & Zhengjun Zhang, 2018. "Max-Linear Competing Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 62-74, January.
    19. Hao Bai & Yuan Zhong & Xin Gao & Wei Xu, 2020. "Multivariate Mixed Response Model with Pairwise Composite-Likelihood Method," Stats, MDPI, vol. 3(3), pages 1-18, July.
    20. Feddag, M.-L. & Bacci, S., 2009. "Pairwise likelihood for the longitudinal mixed Rasch model," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1027-1037, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:79:y:2017:i:1:d:10.1007_s13171-016-0094-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.