IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0043368.html
   My bibliography  Save this article

Organic and Inorganic Carbon in Paddy Soil as Evaluated by Mid-Infrared Photoacoustic Spectroscopy

Author

Listed:
  • Du Changwen
  • Zhou Jianmin
  • Keith W Goyne

Abstract

Paddy soils are classified as wetlands which play a vital role in climatic change and food production. Soil carbon (C), especially soil organic C (SOC), in paddy soils has been received considerable attention as of recent. However, considerably less attention has been given to soil inorganic carbon (SIC) in paddy soils and the relationship between SOC and SIC at interface between soil and the atmosphere. The objective of this research was to investigate the utility of applying Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) to explore SOC and SIC present near the surface (0–10 µm) of paddy soils. The FTIR-PAS spectra revealed an unique absorption region in the wavenumber range of 1,350–1,500 cm−1 that was dominated by C-O (carbonate) and C-H bending vibrations (organic materials), and these vibrations were used to represented SIC and SOC, respectively. A circular distribution between SIC and SOC on the surface of paddy soils was determined using principal component analysis (PCA), and the distribution showed no significant relationship with the age of paddy soil. However, SIC and SOC were negatively correlated, and higher SIC content was observed near the soil surface. This relationship suggests that SIC in soil surface plays important roles in the soil C dynamics.

Suggested Citation

  • Du Changwen & Zhou Jianmin & Keith W Goyne, 2012. "Organic and Inorganic Carbon in Paddy Soil as Evaluated by Mid-Infrared Photoacoustic Spectroscopy," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-6, August.
  • Handle: RePEc:plo:pone00:0043368
    DOI: 10.1371/journal.pone.0043368
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043368
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0043368&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0043368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard A. Gill & H. Wayne Polley & Hyrum B. Johnson & Laurel J. Anderson & Hafiz Maherali & Robert B. Jackson, 2002. "Nonlinear grassland responses to past and future atmospheric CO2," Nature, Nature, vol. 417(6886), pages 279-282, May.
    2. Eric A. Davidson & Susan E. Trumbore & Ronald Amundson, 2000. "Soil warming and organic carbon content," Nature, Nature, vol. 408(6814), pages 789-790, December.
    3. Changming Fang & Pete Smith & John B. Moncrieff & Jo U. Smith, 2005. "Similar response of labile and resistant soil organic matter pools to changes in temperature," Nature, Nature, vol. 433(7021), pages 57-59, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Kefeng & Greenwood, Duncan J. & Spracklen, William P. & Rahn, Clive R. & Hammond, John P. & White, Philip J. & Burns, Ian G., 2010. "A universal agro-hydrological model for water and nitrogen cycles in the soil-crop system SMCR_N: Critical update and further validation," Agricultural Water Management, Elsevier, vol. 97(10), pages 1411-1422, October.
    2. Kuosmanen, Natalia, 2014. "Estimating stocks and flows of nitrogen: Application of dynamic nutrient balance to European agriculture," Ecological Economics, Elsevier, vol. 108(C), pages 68-78.
    3. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    4. Yuanyuan Wang & Zhenghua Hu & A. R. M. Towfiqul Islam & Shutao Chen & Dongyao Shang & Ying Xue, 2019. "Effect of Warming and Elevated O 3 Concentration on CO 2 Emissions in a Wheat-Soybean Rotation Cropland," IJERPH, MDPI, vol. 16(10), pages 1-19, May.
    5. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Post, Joachim & Krysanova, Valentina & Suckow, Felicitas & Mirschel, Wilfried & Rogasik, Jutta & Merbach, Ines, 2007. "Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins," Ecological Modelling, Elsevier, vol. 206(1), pages 93-109.
    7. Xu Yang & Dongsheng Chu & Haibo Hu & Wenbin Deng & Jianyu Chen & Shaojun Guo, 2024. "Effects of Land-Use Type and Salinity on Soil Carbon Mineralization in Coastal Areas of Northern Jiangsu Province," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    8. Michael S. O’Donnell & Daniel J. Manier, 2022. "Spatial Estimates of Soil Moisture for Understanding Ecological Potential and Risk: A Case Study for Arid and Semi-Arid Ecosystems," Land, MDPI, vol. 11(10), pages 1-37, October.
    9. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    10. Zhenjie Dong & Lin Hou & Qi Ruan, 2023. "Effect of Elevation Gradient on Carbon Pools in a Juniperus przewalskii Kom. Forest in Qinghai, China," Sustainability, MDPI, vol. 15(7), pages 1-13, April.
    11. Tuomi, Mikko & Vanhala, Pekka & Karhu, Kristiina & Fritze, Hannu & Liski, Jari, 2008. "Heterotrophic soil respiration—Comparison of different models describing its temperature dependence," Ecological Modelling, Elsevier, vol. 211(1), pages 182-190.
    12. Edi Husen & Selly Salma & Fahmuddin Agus, 2014. "Peat emission control by groundwater management and soil amendments: evidence from laboratory experiments," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 821-829, August.
    13. Eric C. Brevik, 2013. "The Potential Impact of Climate Change on Soil Properties and Processes and Corresponding Influence on Food Security," Agriculture, MDPI, vol. 3(3), pages 1-20, July.
    14. Jaehyun Lee & Youmi Oh & Sang Tae Lee & Yeon Ok Seo & Jeongeun Yun & Yerang Yang & Jinhyun Kim & Qianlai Zhuang & Hojeong Kang, 2023. "Soil organic carbon is a key determinant of CH4 sink in global forest soils," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Ang Hu & Kyoung-Soon Jang & Andrew J. Tanentzap & Wenqian Zhao & Jay T. Lennon & Jinfu Liu & Mingjia Li & James Stegen & Mira Choi & Yahai Lu & Xiaojuan Feng & Jianjun Wang, 2024. "Thermal responses of dissolved organic matter under global change," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Fu, Lintao & Bo, Tianli & Du, Guozhen & Zheng, Xiaojing, 2012. "Modeling the responses of grassland vegetation coverage to grazing disturbance in an alpine meadow," Ecological Modelling, Elsevier, vol. 247(C), pages 221-232.
    17. Ouyang, Zan & Tian, Juncang & Yan, Xinfang & Shen, Hui, 2020. "Effects of different concentrations of dissolved oxygen or temperatures on the growth, photosynthesis, yield and quality of lettuce," Agricultural Water Management, Elsevier, vol. 228(C).
    18. Braakhekke, Maarten C. & Beer, Christian & Hoosbeek, Marcel R. & Reichstein, Markus & Kruijt, Bart & Schrumpf, Marion & Kabat, Pavel, 2011. "SOMPROF: A vertically explicit soil organic matter model," Ecological Modelling, Elsevier, vol. 222(10), pages 1712-1730.
    19. Meng Wei & Aijun Zhang & Zhonghou Tang & Peng Zhao & Hong Pan & Hui Wang & Quangang Yang & Yanhong Lou & Yuping Zhuge, 2020. "Active carbon pool-size is enhanced by long-term manure application," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 66(11), pages 598-605.
    20. Hongru Sun & Guangsheng Zhou & Zhenzhu Xu & Yuhui Wang & Xiaodi Liu & Hongying Yu & Quanhui Ma & Bingrui Jia, 2020. "Temperature sensitivity increases with decreasing soil carbon quality in forest ecosystems across northeast China," Climatic Change, Springer, vol. 160(3), pages 373-384, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0043368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.