IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38905-8.html
   My bibliography  Save this article

Soil organic carbon is a key determinant of CH4 sink in global forest soils

Author

Listed:
  • Jaehyun Lee

    (Yonsei University)

  • Youmi Oh

    (National Oceanic and Atmospheric Administration
    University of Colorado)

  • Sang Tae Lee

    (National Institute of Forest Science)

  • Yeon Ok Seo

    (National Institute of Forest Science)

  • Jeongeun Yun

    (Yonsei University)

  • Yerang Yang

    (Yonsei University)

  • Jinhyun Kim

    (Yonsei University
    Division of Life Sciences, Korea Polar Research Institute)

  • Qianlai Zhuang

    (Purdue University)

  • Hojeong Kang

    (Yonsei University)

Abstract

Soil organic carbon (SOC) is a primary regulator of the forest–climate feedback. However, its indicative capability for the soil CH4 sink is poorly understood due to the incomplete knowledge of the underlying mechanisms. Therefore, SOC is not explicitly included in the current model estimation of the global forest CH4 sink. Here, using in-situ observations, global meta-analysis, and process-based modeling, we provide evidence that SOC constitutes an important variable that governs the forest CH4 sink. We find that a CH4 sink is enhanced with increasing SOC content on regional and global scales. The revised model with SOC function better reproduces the field observation and estimates a 39% larger global forest CH4 sink (24.27 Tg CH4 yr−1) than the model without considering SOC effects (17.46 Tg CH4 yr−1). This study highlights the role of SOC in the forest CH4 sink, which shall be factored into future global CH4 budget quantification.

Suggested Citation

  • Jaehyun Lee & Youmi Oh & Sang Tae Lee & Yeon Ok Seo & Jeongeun Yun & Yerang Yang & Jinhyun Kim & Qianlai Zhuang & Hojeong Kang, 2023. "Soil organic carbon is a key determinant of CH4 sink in global forest soils," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38905-8
    DOI: 10.1038/s41467-023-38905-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38905-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38905-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew T. Nottingham & Patrick Meir & Esther Velasquez & Benjamin L. Turner, 2020. "Author Correction: Soil carbon loss by experimental warming in a tropical forest," Nature, Nature, vol. 586(7831), pages 32-32, October.
    2. Eric A. Davidson & Susan E. Trumbore & Ronald Amundson, 2000. "Soil warming and organic carbon content," Nature, Nature, vol. 408(6814), pages 789-790, December.
    3. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    4. Youmi Oh & Qianlai Zhuang & Licheng Liu & Lisa R. Welp & Maggie C. Y. Lau & Tullis C. Onstott & David Medvigy & Lori Bruhwiler & Edward J. Dlugokencky & Gustaf Hugelius & Ludovica D’Imperio & Bo Elber, 2020. "Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic," Nature Climate Change, Nature, vol. 10(4), pages 317-321, April.
    5. W. Knorr & I. C. Prentice & J. I. House & E. A. Holland, 2005. "Long-term sensitivity of soil carbon turnover to warming," Nature, Nature, vol. 433(7023), pages 298-301, January.
    6. Andrew T. Nottingham & Patrick Meir & Esther Velasquez & Benjamin L. Turner, 2020. "Soil carbon loss by experimental warming in a tropical forest," Nature, Nature, vol. 584(7820), pages 234-237, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Iain P. Hartley & Tim C. Hill & Sarah E. Chadburn & Gustaf Hugelius, 2021. "Temperature effects on carbon storage are controlled by soil stabilisation capacities," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Karis J. McFarlane & Daniela F. Cusack & Lee H. Dietterich & Alexandra L. Hedgpeth & Kari M. Finstad & Andrew T. Nottingham, 2024. "Experimental warming and drying increase older carbon contributions to soil respiration in lowland tropical forests," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Charlotte J. Alster & Allycia Laar & Jordan P. Goodrich & Vickery L. Arcus & Julie R. Deslippe & Alexis J. Marshall & Louis A. Schipper, 2023. "Quantifying thermal adaptation of soil microbial respiration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Shuqi Qin & Dianye Zhang & Bin Wei & Yuanhe Yang, 2024. "Dual roles of microbes in mediating soil carbon dynamics in response to warming," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Ying Chen & Wenkuan Qin & Qiufang Zhang & Xudong Wang & Jiguang Feng & Mengguang Han & Yanhui Hou & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Margaret S. Torn & Biao Zhu, 2024. "Whole-soil warming leads to substantial soil carbon emission in an alpine grassland," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Jessica Stubenrauch & Beatrice Garske & Felix Ekardt & Katharina Hagemann, 2022. "European Forest Governance: Status Quo and Optimising Options with Regard to the Paris Climate Target," Sustainability, MDPI, vol. 14(7), pages 1-35, April.
    8. Runqing Zhang & Xiaoyu E & Zhencheng Ma & Yinghe An & Qinggele Bao & Zhixiang Wu & Lan Wu & Zhongyi Sun, 2024. "Drought Sensitivity and Vulnerability of Rubber Plantation GPP—Insights from Flux Site-Based Simulation," Land, MDPI, vol. 13(6), pages 1-16, May.
    9. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Elliott R. Dossou-Yovo & Sander J. Zwart & Amadou Kouyaté & Ibrahima Ouédraogo & Oladele Bakare, 2018. "Predictors of Drought in Inland Valley Landscapes and Enabling Factors for Rice Farmers’ Mitigation Measures in the Sudan-Sahel Zone," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    11. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    13. Mark A. Anthony & Leho Tedersoo & Bruno Vos & Luc Croisé & Henning Meesenburg & Markus Wagner & Henning Andreae & Frank Jacob & Paweł Lech & Anna Kowalska & Martin Greve & Genoveva Popova & Beat Frey , 2024. "Fungal community composition predicts forest carbon storage at a continental scale," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    15. Tong Qiu & Robert Andrus & Marie-Claire Aravena & Davide Ascoli & Yves Bergeron & Roberta Berretti & Daniel Berveiller & Michal Bogdziewicz & Thomas Boivin & Raul Bonal & Don C. Bragg & Thomas Caignar, 2022. "Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Joachim Maes & Adrián G. Bruzón & José I. Barredo & Sara Vallecillo & Peter Vogt & Inés Marí Rivero & Fernando Santos-Martín, 2023. "Accounting for forest condition in Europe based on an international statistical standard," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    18. Brovkin, Victor & Cherkinsky, Alexander & Goryachkin, Sergey, 2008. "Estimating soil carbon turnover using radiocarbon data: A case-study for European Russia," Ecological Modelling, Elsevier, vol. 216(2), pages 178-187.
    19. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    20. Joachim Eisenberg & Fabrice A. Muvundja, 2020. "Quantification of Erosion in Selected Catchment Areas of the Ruzizi River (DRC) Using the (R)USLE Model," Land, MDPI, vol. 9(4), pages 1-18, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38905-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.