IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v247y2012icp221-232.html
   My bibliography  Save this article

Modeling the responses of grassland vegetation coverage to grazing disturbance in an alpine meadow

Author

Listed:
  • Fu, Lintao
  • Bo, Tianli
  • Du, Guozhen
  • Zheng, Xiaojing

Abstract

Vegetation coverage plays an important role in hindering the erosion in grassland. The grasslands around the world are suffering from the overgrazing which usually causes coverage decrease. Thus, an urgent objective of ecology is to understand how the vegetation coverage varies with overgrazing in the grassland. Although overgrazing has been studied for a long time, its influence on the change of coverage is not well understood. This work modified Noy-Meir's model of stability in grazing systems by modeling vegetation coverage instead of biomass. The grassland of Maqu (Gansu, China), which is located on the eastern Tibetan Plateau, was chosen as the case study site. The modified model and the introduced parameters were tested, and the relationship between coverage change and the overgrazing sheep units was discussed. The modified model proved to be more suitable to describe the change of vegetation coverage under overgrazing than the published classic models. The results reveal the variation of coverage is determined corporately by grazing intensity, natural conditions and property of grassland. Besides, these results give a reasonable explanation on the difference of coverage change under various grazing situations in previous works. Moreover, the spatial and temporal heterogeneity were studied through introducing some parameters, i.e., the ideally discontinuous grazing period, the proportion that the time of overgrazing occupies in the period, homogeneous factor and restraining constant. Also, the potential positive impact of grazing on the change of coverage was discussed through increasing the growth rate, based on its role in nutrient deposition.

Suggested Citation

  • Fu, Lintao & Bo, Tianli & Du, Guozhen & Zheng, Xiaojing, 2012. "Modeling the responses of grassland vegetation coverage to grazing disturbance in an alpine meadow," Ecological Modelling, Elsevier, vol. 247(C), pages 221-232.
  • Handle: RePEc:eee:ecomod:v:247:y:2012:i:c:p:221-232
    DOI: 10.1016/j.ecolmodel.2012.08.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012004383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.08.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sonia Kéfi & Max Rietkerk & Concepción L. Alados & Yolanda Pueyo & Vasilios P. Papanastasis & Ahmed ElAich & Peter C. de Ruiter, 2007. "Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems," Nature, Nature, vol. 449(7159), pages 213-217, September.
    2. Ryrie, Susan C. & Prentice, I. Colin, 2011. "Herbivores enable plant survival under nutrient limited conditions in a model grazing system," Ecological Modelling, Elsevier, vol. 222(3), pages 381-397.
    3. Richard A. Gill & H. Wayne Polley & Hyrum B. Johnson & Laurel J. Anderson & Hafiz Maherali & Robert B. Jackson, 2002. "Nonlinear grassland responses to past and future atmospheric CO2," Nature, Nature, vol. 417(6886), pages 279-282, May.
    4. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azimatjan Mamattursun & Han Yang & Kamila Ablikim & Nurbiya Obulhasan, 2022. "Spatiotemporal Evolution and Driving Forces of Vegetation Cover in the Urumqi River Basin," IJERPH, MDPI, vol. 19(22), pages 1-25, November.
    2. Qingqing Ma & Linrong Chai & Fujiang Hou & Shenghua Chang & Yushou Ma & Atsushi Tsunekawa & Yunxiang Cheng, 2019. "Quantifying Grazing Intensity Using Remote Sensing in Alpine Meadows on Qinghai-Tibetan Plateau," Sustainability, MDPI, vol. 11(2), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martinez-Garcia, Ricardo & Cabal, Ciro & Calabrese, Justin M. & Hernández-García, Emilio & Tarnita, Corina E. & López, Cristóbal & Bonachela, Juan A., 2023. "Integrating theory and experiments to link local mechanisms and ecosystem-level consequences of vegetation patterns in drylands," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Wu, Chengxing & Duan, Dongli, 2024. "Collapse process prediction of mutualistic dynamical networks with k-core and dimension reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Tobias Brett & Marco Ajelli & Quan-Hui Liu & Mary G Krauland & John J Grefenstette & Willem G van Panhuis & Alessandro Vespignani & John M Drake & Pejman Rohani, 2020. "Detecting critical slowing down in high-dimensional epidemiological systems," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-19, March.
    4. van de Koppel, Johan & Gupta, Rohit & Vuik, Cornelis, 2011. "Scaling-up spatially-explicit ecological models using graphics processors," Ecological Modelling, Elsevier, vol. 222(17), pages 3011-3019.
    5. Zhang, Hongxia & Xu, Wei & Han, Ping & Qiao, Yan, 2020. "Stochastic dynamic balance of a bi-stable vegetation model with pulse control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    6. Calsina, Àngel & Cuadrado, Sílvia & Vidiella, Blai & Sardanyés, Josep, 2023. "About ghost transients in spatial continuous media," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Ryan D Batt & Tarsha Eason & Ahjond Garmestani, 2019. "Time scale of resilience loss: Implications for managing critical transitions in water quality," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-19, October.
    8. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    9. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    10. Karimi Rahjerdi, Bahareh & Ramamoorthy, Ramesh & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Jafari, Sajad, 2022. "Indicating the synchronization bifurcation points using the early warning signals in two case studies: Continuous and explosive synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    12. Gianluca Fabiani & Nikolaos Evangelou & Tianqi Cui & Juan M. Bello-Rivas & Cristina P. Martin-Linares & Constantinos Siettos & Ioannis G. Kevrekidis, 2024. "Task-oriented machine learning surrogates for tipping points of agent-based models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    14. Roland Clift & Sarah Sim & Henry King & Jonathan L. Chenoweth & Ian Christie & Julie Clavreul & Carina Mueller & Leo Posthuma & Anne-Marie Boulay & Rebecca Chaplin-Kramer & Julia Chatterton & Fabrice , 2017. "The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains," Sustainability, MDPI, vol. 9(2), pages 1-23, February.
    15. Darrell Jiajie Tay & Chung-I Chou & Sai-Ping Li & Shang You Tee & Siew Ann Cheong, 2016. "Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    16. Fushing, Hsieh & Jordà, Òscar & Beisner, Brianne & McCowan, Brenda, 2014. "Computing systemic risk using multiple behavioral and keystone networks: The emergence of a crisis in primate societies and banks," International Journal of Forecasting, Elsevier, vol. 30(3), pages 797-806.
    17. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    18. Martin Lindegren & Vasilis Dakos & Joachim P Gröger & Anna Gårdmark & Georgs Kornilovs & Saskia A Otto & Christian Möllmann, 2012. "Early Detection of Ecosystem Regime Shifts: A Multiple Method Evaluation for Management Application," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    19. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.
    20. Quentin Remy & Julius Hohlfeld & Maxime Vergès & Yann Le Guen & Jon Gorchon & Grégory Malinowski & Stéphane Mangin & Michel Hehn, 2023. "Accelerating ultrafast magnetization reversal by non-local spin transfer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:247:y:2012:i:c:p:221-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.