IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0012114.html
   My bibliography  Save this article

Integrated Population Modeling of Black Bears in Minnesota: Implications for Monitoring and Management

Author

Listed:
  • John R Fieberg
  • Kyle W Shertzer
  • Paul B Conn
  • Karen V Noyce
  • David L Garshelis

Abstract

Background: Wildlife populations are difficult to monitor directly because of costs and logistical challenges associated with collecting informative abundance data from live animals. By contrast, data on harvested individuals (e.g., age and sex) are often readily available. Increasingly, integrated population models are used for natural resource management because they synthesize various relevant data into a single analysis. Methodology/Principal Findings: We investigated the performance of integrated population models applied to black bears (Ursus americanus) in Minnesota, USA. Models were constructed using sex-specific age-at-harvest matrices (1980–2008), data on hunting effort and natural food supplies (which affects hunting success), and statewide mark–recapture estimates of abundance (1991, 1997, 2002). We compared this approach to Downing reconstruction, a commonly used population monitoring method that utilizes only age-at-harvest data. We first conducted a large-scale simulation study, in which our integrated models provided more accurate estimates of population trends than did Downing reconstruction. Estimates of trends were robust to various forms of model misspecification, including incorrectly specified cub and yearling survival parameters, age-related reporting biases in harvest data, and unmodeled temporal variability in survival and harvest rates. When applied to actual data on Minnesota black bears, the model predicted that harvest rates were negatively correlated with food availability and positively correlated with hunting effort, consistent with independent telemetry data. With no direct data on fertility, the model also correctly predicted 2-point cycles in cub production. Model-derived estimates of abundance for the most recent years provided a reasonable match to an empirical population estimate obtained after modeling efforts were completed. Conclusions/Significance: Integrated population modeling provided a reasonable framework for synthesizing age-at-harvest data, periodic large-scale abundance estimates, and measured covariates thought to affect harvest rates of black bears in Minnesota. Collection and analysis of these data appear to form the basis of a robust and viable population monitoring program.

Suggested Citation

  • John R Fieberg & Kyle W Shertzer & Paul B Conn & Karen V Noyce & David L Garshelis, 2010. "Integrated Population Modeling of Black Bears in Minnesota: Implications for Monitoring and Management," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-11, August.
  • Handle: RePEc:plo:pone00:0012114
    DOI: 10.1371/journal.pone.0012114
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012114
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0012114&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0012114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. Besbeas & S. N. Freeman & B. J. T. Morgan & E. A. Catchpole, 2002. "Integrating Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters," Biometrics, The International Biometric Society, vol. 58(3), pages 540-547, September.
    2. Paul B. Conn & Duane R. Diefenbach & Jeffrey L. Laake & Mark A. Ternent & Gary C. White, 2008. "Bayesian Analysis of Wildlife Age-at-Harvest Data," Biometrics, The International Biometric Society, vol. 64(4), pages 1170-1177, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher M Gast & John R Skalski & Jason L Isabelle & Michael V Clawson, 2013. "Random Effects Models and Multistage Estimation Procedures for Statistical Population Reconstruction of Small Game Populations," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-12, June.
    2. Sergey S. Berg, 2023. "Utility of Particle Swarm Optimization in Statistical Population Reconstruction," Mathematics, MDPI, vol. 11(4), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis, Emily B. & Kéry, Marc & Morgan, Byron J.T. & Coray, Armin & Schaub, Michael & Baur, Bruno, 2021. "Integrated modelling of insect population dynamics at two temporal scales," Ecological Modelling, Elsevier, vol. 441(C).
    2. Gurutzeta Guillera-Arroita & José J. Lahoz-Monfort, 2017. "Species occupancy estimation and imperfect detection: shall surveys continue after the first detection?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 381-398, October.
    3. Zhang, Hongmei & Ghosh, Kaushik & Ghosh, Pulak, 2012. "Sampling designs via a multivariate hypergeometric-Dirichlet process model for a multi-species assemblage with unknown heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2562-2573.
    4. Nichols, J.M. & Spendelow, J.A. & Nichols, J.D., 2017. "Using Optimal Transport Theory to Estimate Transition Probabilities in Metapopulation Dynamics," Ecological Modelling, Elsevier, vol. 359(C), pages 311-319.
    5. Leo Polansky & Ken B. Newman & Lara Mitchell, 2021. "Improving inference for nonlinear state‐space models of animal population dynamics given biased sequential life stage data," Biometrics, The International Biometric Society, vol. 77(1), pages 352-361, March.
    6. Blanca Sarzo & Ruth King & David Conesa & Jonas Hentati-Sundberg, 2021. "Correcting Bias in Survival Probabilities for Partially Monitored Populations via Integrated Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 200-219, June.
    7. Chiara Mazzetta & Steve Brooks & Stephen N. Freeman, 2007. "On Smoothing Trends in Population Index Modeling," Biometrics, The International Biometric Society, vol. 63(4), pages 1007-1014, December.
    8. Abadi, Fitsum & Gimenez, Olivier & Jakober, Hans & Stauber, Wolfgang & Arlettaz, Raphaël & Schaub, Michael, 2012. "Estimating the strength of density dependence in the presence of observation errors using integrated population models," Ecological Modelling, Elsevier, vol. 242(C), pages 1-9.
    9. José J. Lahoz-Monfort & Michael P. Harris & Sarah Wanless & Stephen N. Freeman & Byron J. T. Morgan, 2017. "Bringing It All Together: Multi-species Integrated Population Modelling of a Breeding Community," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 140-160, June.
    10. Simone Tenan & Paolo Pedrini & Natalia Bragalanti & Claudio Groff & Chris Sutherland, 2017. "Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-18, October.
    11. Soumen Dey & Mohan Delampady & Ravishankar Parameshwaran & N. Samba Kumar & Arjun Srivathsa & K. Ullas Karanth, 2017. "Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 111-139, June.
    12. Mosnier, A. & Doniol-Valcroze, T. & Gosselin, J.-F. & Lesage, V. & Measures, L.N. & Hammill, M.O., 2015. "Insights into processes of population decline using an integrated population model: The case of the St. Lawrence Estuary beluga (Delphinapterus leucas)," Ecological Modelling, Elsevier, vol. 314(C), pages 15-31.
    13. Ming Zhou & Rachel S. McCrea & Eleni Matechou & Diana J. Cole & Richard A. Griffiths, 2019. "Removal models accounting for temporary emigration," Biometrics, The International Biometric Society, vol. 75(1), pages 24-35, March.
    14. Gimenez, Olivier & Rossi, Vivien & Choquet, Rémi & Dehais, Camille & Doris, Blaise & Varella, Hubert & Vila, Jean-Pierre & Pradel, Roger, 2007. "State-space modelling of data on marked individuals," Ecological Modelling, Elsevier, vol. 206(3), pages 431-438.
    15. Barraquand, Frédéric & Gimenez, Olivier, 2019. "Integrating multiple data sources to fit matrix population models for interacting species," Ecological Modelling, Elsevier, vol. 411(C).
    16. R. B. O'Hara & S. Lampila & M. Orell, 2009. "Estimation of Rates of Births, Deaths, and Immigration from Mark–Recapture Data," Biometrics, The International Biometric Society, vol. 65(1), pages 275-281, March.
    17. Sinnott, Emily A. & Thompson, Frank R. & Weegman, Mitch D. & Thompson, Thomas R. & Mosloff, Alisha R. & Hedges, R. Kyle & Loncarich, Frank L., 2023. "Evaluation of seasonal site-level demography and management for northern bobwhite using integrated population models," Ecological Modelling, Elsevier, vol. 475(C).
    18. Devin S. Johnson & Brian M. Brost & Mevin B. Hooten, 2022. "Greater Than the Sum of its Parts: Computationally Flexible Bayesian Hierarchical Modeling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 382-400, June.
    19. N. O. A. S. Jourdain & D. J. Cole & M. S. Ridout & J. Marcus Rowcliffe, 2020. "Statistical Development of Animal Density Estimation Using Random Encounter Modelling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 148-167, June.
    20. Barraquand, Frédéric & Gimenez, Olivier, 2021. "Fitting stochastic predator–prey models using both population density and kill rate data," Theoretical Population Biology, Elsevier, vol. 138(C), pages 1-27.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0012114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.