IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0011785.html
   My bibliography  Save this article

The Effect of Map Boundary on Estimates of Landscape Resistance to Animal Movement

Author

Listed:
  • Erin L Koen
  • Colin J Garroway
  • Paul J Wilson
  • Jeff Bowman

Abstract

Background: Artificial boundaries on a map occur when the map extent does not cover the entire area of study; edges on the map do not exist on the ground. These artificial boundaries might bias the results of animal dispersal models by creating artificial barriers to movement for model organisms where there are no barriers for real organisms. Here, we characterize the effects of artificial boundaries on calculations of landscape resistance to movement using circuit theory. We then propose and test a solution to artificially inflated resistance values whereby we place a buffer around the artificial boundary as a substitute for the true, but unknown, habitat. Methodology/Principal Findings: We randomly assigned landscape resistance values to map cells in the buffer in proportion to their occurrence in the known map area. We used circuit theory to estimate landscape resistance to organism movement and gene flow, and compared the output across several scenarios: a habitat-quality map with artificial boundaries and no buffer, a map with a buffer composed of randomized habitat quality data, and a map with a buffer composed of the true habitat quality data. We tested the sensitivity of the randomized buffer to the possibility that the composition of the real but unknown buffer is biased toward high or low quality. We found that artificial boundaries result in an overestimate of landscape resistance. Conclusions/Significance: Artificial map boundaries overestimate resistance values. We recommend the use of a buffer composed of randomized habitat data as a solution to this problem. We found that resistance estimated using the randomized buffer did not differ from estimates using the real data, even when the composition of the real data was varied. Our results may be relevant to those interested in employing Circuitscape software in landscape connectivity and landscape genetics studies.

Suggested Citation

  • Erin L Koen & Colin J Garroway & Paul J Wilson & Jeff Bowman, 2010. "The Effect of Map Boundary on Estimates of Landscape Resistance to Animal Movement," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-8, July.
  • Handle: RePEc:plo:pone00:0011785
    DOI: 10.1371/journal.pone.0011785
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011785
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0011785&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0011785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. LaRue, Michelle A. & Nielsen, Clayton K., 2008. "Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods," Ecological Modelling, Elsevier, vol. 212(3), pages 372-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J Nevil Amos & Andrew F Bennett & Ralph Mac Nally & Graeme Newell & Alexandra Pavlova & James Q Radford & James R Thomson & Matt White & Paul Sunnucks, 2012. "Predicting Landscape-Genetic Consequences of Habitat Loss, Fragmentation and Mobility for Multiple Species of Woodland Birds," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-12, February.
    2. Robby R Marrotte & Jeff Bowman, 2017. "The relationship between least-cost and resistance distance," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nichols, J.M. & Spendelow, J.A. & Nichols, J.D., 2017. "Using Optimal Transport Theory to Estimate Transition Probabilities in Metapopulation Dynamics," Ecological Modelling, Elsevier, vol. 359(C), pages 311-319.
    2. Shaokun Zhou & Yuhong Song & Yijiao Li & Jing Wang & Lan Zhang, 2022. "Construction of Ecological Security Pattern for Plateau Lake Based on MSPA–MCR Model: A Case Study of Dianchi Lake Area," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    3. An, Yi & Liu, Shiliang & Sun, Yongxiu & Shi, Fangning & Liu, Yixuan & Beazley, Robert, 2021. "Determining the importance of core areas in the alpine shrub-meadow gradient zone of the Qinghai-Tibet Plateau," Ecological Modelling, Elsevier, vol. 440(C).
    4. LaRue, Michelle A. & Nielsen, Clayton K., 2016. "Population viability of recolonizing cougars in midwestern North America," Ecological Modelling, Elsevier, vol. 321(C), pages 121-129.
    5. Biljana Savić & Alevtina Evgrafova & Cenk Donmez & Filip Vasić & Michael Glemnitz & Carsten Paul, 2021. "Assessing the Role of Kettle Holes for Providing and Connecting Amphibian Habitats in Agricultural Landscapes," Land, MDPI, vol. 10(7), pages 1-22, June.
    6. Stricker, Heather K. & Gehring, Thomas M. & Donner, Deahn & Petroelje, Tyler, 2019. "Multi-scale habitat selection model assessing potential gray wolf den habitat and dispersal corridors in Michigan, USA," Ecological Modelling, Elsevier, vol. 397(C), pages 84-94.
    7. An, Yi & Liu, Shiliang & Sun, Yongxiu & Shi, Fangning & Zhao, Shuang, 2020. "Negative effects of farmland expansion on multi-species landscape connectivity in a tropical region in Southwest China," Agricultural Systems, Elsevier, vol. 179(C).
    8. Federica Isola & Sabrina Lai & Federica Leone & Corrado Zoppi, 2024. "Urban Green Infrastructure and Ecosystem Service Supply: A Study Concerning the Functional Urban Area of Cagliari, Italy," Sustainability, MDPI, vol. 16(19), pages 1-37, October.
    9. Hassène Aissi & Salem Chakhar & Vincent Mousseau, 2012. "GIS-Based Multicriteria Evaluation Approach for Corridor Siting," Environment and Planning B, , vol. 39(2), pages 287-307, April.
    10. Rong Guo & Yujing Bai, 2019. "Simulation of an Urban-Rural Spatial Structure on the Basis of Green Infrastructure Assessment: The Case of Harbin, China," Land, MDPI, vol. 8(12), pages 1-21, December.
    11. Federica Isola & Federica Leone & Corrado Zoppi, 2022. "Mapping of Ecological Corridors as Connections between Protected Areas: A Study Concerning Sardinia, Italy," Sustainability, MDPI, vol. 14(11), pages 1-31, May.
    12. Chi, Yuan & Xie, Zuolun & Wang, Jing, 2019. "Establishing archipelagic landscape ecological network with full connectivity at dual spatial scales," Ecological Modelling, Elsevier, vol. 399(C), pages 54-65.
    13. Jung A Lee & Jinhyung Chon & Changwoo Ahn, 2014. "Planning Landscape Corridors in Ecological Infrastructure Using Least-Cost Path Methods Based on the Value of Ecosystem Services," Sustainability, MDPI, vol. 6(11), pages 1-22, October.
    14. Yibo Xu & Xiaohuang Liu & Lianrong Zhao & Jiufen Liu & Xiaofeng Zhao & Hongyu Li & Chao Wang & Honghui Zhao & Ran Wang & Xinping Luo & Liyuan Xing, 2024. "Prediction of Potential Suitability Areas for Ephedra sinica in the Five Northwestern Provinces of China Under Climate Change," Agriculture, MDPI, vol. 14(10), pages 1-18, October.
    15. LaRue, Michelle A. & Nielsen, Clayton K., 2011. "Modelling potential habitat for cougars in midwestern North America," Ecological Modelling, Elsevier, vol. 222(3), pages 897-900.
    16. Federica Isola & Sabrina Lai & Federica Leone & Corrado Zoppi, 2022. "Strengthening a Regional Green Infrastructure through Improved Multifunctionality and Connectedness: Policy Suggestions from Sardinia, Italy," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    17. Li, Hailong & Li, Dihua & Li, Ting & Qiao, Qing & Yang, Jian & Zhang, Hemin, 2010. "Application of least-cost path model to identify a giant panda dispersal corridor network after the Wenchuan earthquake—Case study of Wolong Nature Reserve in China," Ecological Modelling, Elsevier, vol. 221(6), pages 944-952.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0011785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.