IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v8y2019i12p196-d298224.html
   My bibliography  Save this article

Simulation of an Urban-Rural Spatial Structure on the Basis of Green Infrastructure Assessment: The Case of Harbin, China

Author

Listed:
  • Rong Guo

    (School of Architecture, Harbin Institute of Technology, Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, 66 West Dazhi Street, Nangang District, Harbin 150006, China)

  • Yujing Bai

    (School of Architecture, Harbin Institute of Technology, Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, 66 West Dazhi Street, Nangang District, Harbin 150006, China)

Abstract

Due to their long-term dual structures and rapid urbanization, cities and villages in developing countries are undergoing the challenges of urban-rural integration and ecological security. This study aims to determine the pattern of urban-rural spatial structures under the circumstances of ecological security in the future to promote the integrated, coordinated, green, and sustainable development of urban-rural spaces. Using a quantitative evaluation method, the logistic-CA model, the LCP (least cost path) model, and a classification of ecological importance, this study constructed an integrated simulation model based on a green infrastructure assessment and applied the model to simulate and predict the urban-rural spatial structure of the Harbin city territory (Harbin) in 2035. The results indicate that the urban-rural hierarchical scale structure of Harbin comprises a central city, sub-central city, central town, major town, common town, central village, and general village. The urban-rural traffic network structure forms a pattern of “radiation + grid”, with Harbin city at the center of the structure. The urban-rural land use zoning structure consists of eco-spaces, agricultural spaces, and construction spaces. It can be concluded that in 2035, the urban-rural spatial structure of Harbin will show an increasing development tendency, where single-center, medium, and small cities in will Harbin develop, and traffic systems above the county level will also improve.

Suggested Citation

  • Rong Guo & Yujing Bai, 2019. "Simulation of an Urban-Rural Spatial Structure on the Basis of Green Infrastructure Assessment: The Case of Harbin, China," Land, MDPI, vol. 8(12), pages 1-21, December.
  • Handle: RePEc:gam:jlands:v:8:y:2019:i:12:p:196-:d:298224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/8/12/196/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/8/12/196/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berdegué, Julio A. & Soloaga, Isidro, 2018. "Small and medium cities and development of Mexican rural areas," World Development, Elsevier, vol. 107(C), pages 277-288.
    2. Wang, Siliang & Tan, Shukui & Yang, Shengfu & Lin, Qiaowen & Zhang, Lu, 2019. "Urban-biased land development policy and the urban-rural income gap: Evidence from Hubei Province, China," Land Use Policy, Elsevier, vol. 87(C).
    3. Xiaorui Zhang & Zhenbo Wang & Jing Lin, 2015. "GIS Based Measurement and Regulatory Zoning of Urban Ecological Vulnerability," Sustainability, MDPI, vol. 7(8), pages 1-19, July.
    4. Schäffler, Alexis & Swilling, Mark, 2013. "Valuing green infrastructure in an urban environment under pressure — The Johannesburg case," Ecological Economics, Elsevier, vol. 86(C), pages 246-257.
    5. Daowei Zhang & Anne Stenger, 2015. "Value and valuation of forest ecosystem services," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 4(2), pages 129-140, July.
    6. van Vliet, Jasper & Bregt, Arnold K. & Hagen-Zanker, Alex, 2011. "Revisiting Kappa to account for change in the accuracy assessment of land-use change models," Ecological Modelling, Elsevier, vol. 222(8), pages 1367-1375.
    7. Komugabe-Dixson, Aimée F. & de Ville, Naomi S.E. & Trundle, Alexei & McEvoy, Darryn, 2019. "Environmental change, urbanisation, and socio-ecological resilience in the Pacific: Community narratives from Port Vila, Vanuatu," Ecosystem Services, Elsevier, vol. 39(C).
    8. Zhongzhong Zeng & Haishan Xia & Haoxia Chen, 2013. "Research of Chinese Ancient Urban Morphologies Based on Climate Adaptability," Springer Books, in: Feng Chen & Yisheng Liu & Guowei Hua (ed.), Ltlgb 2012, edition 127, chapter 0, pages 781-785, Springer.
    9. Guanghu Wan & Chen Wang, 2014. "Unprecedented Urbanisation in Asia and Its Impacts on the Environment," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 47(3), pages 378-385, September.
    10. Eric de Noronha Vaz & Peter Nijkamp & Marco Painho & Mario Gaetano, 2011. "A Multi-Scenario Forecast of Urban Change: A Study on Urban Growth in the Algarve," Tinbergen Institute Discussion Papers 11-142/3, Tinbergen Institute.
    11. LaRue, Michelle A. & Nielsen, Clayton K., 2008. "Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods," Ecological Modelling, Elsevier, vol. 212(3), pages 372-381.
    12. Driezen, Kassandra & Adriaensen, Frank & Rondinini, Carlo & Doncaster, C. Patrick & Matthysen, Erik, 2007. "Evaluating least-cost model predictions with empirical dispersal data: A case-study using radiotracking data of hedgehogs (Erinaceus europaeus)," Ecological Modelling, Elsevier, vol. 209(2), pages 314-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byungsun Yang & Dongkun Lee, 2021. "Urban Green Space Arrangement for an Optimal Landscape Planning Strategy for Runoff Reduction," Land, MDPI, vol. 10(9), pages 1-12, August.
    2. Lingyu Kong & Xiaodong Xu & Wei Wang & Jinxiu Wu & Meiying Zhang, 2021. "Comprehensive Evaluation and Quantitative Research on the Living Protection of Traditional Villages from the Perspective of “Production–Living–Ecology”," Land, MDPI, vol. 10(6), pages 1-25, May.
    3. Daizhong Tang & Baorui Li & Yuan Qiu & Linlin Zhao, 2020. "Research on Urban and Rural Coordination Development and Its Driving Force Based on the Space-time Evolvement Taking Guangdong Province as an Example," Land, MDPI, vol. 9(8), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siyu Sheng & Bohan Yang & Bing Kuang, 2022. "Impact of Cereal Production Displacement from Urban Expansion on Ecosystem Service Values in China: Based on Three Cropland Supplement Strategies," IJERPH, MDPI, vol. 19(8), pages 1-19, April.
    2. Aryal, Kishor & Maraseni, Tek & Apan, Armando, 2023. "Examining policy−institution−program (PIP) responses against the drivers of ecosystem dynamics. A chronological review (1960–2020) from Nepal," Land Use Policy, Elsevier, vol. 132(C).
    3. Qian Zhou & Feng Gui & Benxuan Zhao & Jingyi Liu & Huiwen Cai & Kaida Xu & Sheng Zhao, 2024. "Examining the Social Costs of Carbon Emissions and the Ecosystem Service Value in Island Ecosystems: An Analysis of the Zhoushan Archipelago," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    4. Yajing Shao & Xuefeng Yuan & Chaoqun Ma & Ruifang Ma & Zhaoxia Ren, 2020. "Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 12(11), pages 1-20, May.
    5. Majid Ebrahimi & Hamid Nejadsoleymani & Mohammad Reza Mansouri Daneshvar, 2019. "Land suitability map and ecological carrying capacity for the recognition of touristic zones in the Kalat region, Iran: a multi-criteria analysis based on AHP and GIS," Asia-Pacific Journal of Regional Science, Springer, vol. 3(3), pages 697-718, October.
    6. Li, Mengxu & Liu, Jianghua & Chen, Yang & Yang, Zhijiu, 2023. "Can sustainable development strategy reduce income inequality in resource-based regions? A natural resource dependence perspective," Resources Policy, Elsevier, vol. 81(C).
    7. Sanja Gašparović & Ana Sopina & Anton Zeneral, 2022. "Impacts of Zagreb’s Urban Development on Dynamic Changes in Stream Landscapes from Mid-Twentieth Century," Land, MDPI, vol. 11(5), pages 1-25, May.
    8. Sirakaya, Aysegül & Cliquet, An & Harris, Jim, 2018. "Ecosystem services in cities: Towards the international legal protection of ecosystem services in urban environments," Ecosystem Services, Elsevier, vol. 29(PB), pages 205-212.
    9. Dennis, Matthew & James, Philip, 2017. "Ecosystem services of collectively managed urban gardens: Exploring factors affecting synergies and trade-offs at the site level," Ecosystem Services, Elsevier, vol. 26(PA), pages 17-26.
    10. Donatella Valente & María Victoria Marinelli & Erica Maria Lovello & Cosimo Gaspare Giannuzzi & Irene Petrosillo, 2022. "Fostering the Resiliency of Urban Landscape through the Sustainable Spatial Planning of Green Spaces," Land, MDPI, vol. 11(3), pages 1-13, March.
    11. Lu, Shenghua & Wang, Hui, 2023. "How revolving-door recruitment makes firms stand out in land market: Evidence from China," China Economic Review, Elsevier, vol. 78(C).
    12. Alexandra Titz & Sosten S. Chiotha, 2019. "Pathways for Sustainable and Inclusive Cities in Southern and Eastern Africa through Urban Green Infrastructure?," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    13. Fangfang Xun & Yecui Hu & Ling Lv & Jinhui Tong, 2017. "Farmers’ Awareness of Ecosystem Services and the Associated Policy Implications," Sustainability, MDPI, vol. 9(9), pages 1-13, September.
    14. Lili Zhang & Baoqing Hu & Ze Zhang & Gaodou Liang & Simin Huang, 2023. "Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation," Land, MDPI, vol. 12(4), pages 1-25, March.
    15. Yu Li & Ji Zheng & Fei Li & Xueting Jin & Chen Xu, 2017. "Assessment of municipal infrastructure development and its critical influencing factors in urban China: A FA and STIRPAT approach," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-14, August.
    16. Xinmin Zhang & Hualin Xie & Jiaying Shi & Tiangui Lv & Caihua Zhou & Wangda Liu, 2020. "Assessing Changes in Ecosystem Service Values in Response to Land Cover Dynamics in Jiangxi Province, China," IJERPH, MDPI, vol. 17(9), pages 1-15, April.
    17. Guzman, Luis A. & Escobar, Francisco & Peña, Javier & Cardona, Rafael, 2020. "A cellular automata-based land-use model as an integrated spatial decision support system for urban planning in developing cities: The case of the Bogotá region," Land Use Policy, Elsevier, vol. 92(C).
    18. Jiangjun Wan & Yuxin Li & Chunchi Ma & Tian Jiang & Yi Su & Lingqing Zhang & Xueqian Song & Haiying Sun & Ziming Wang & Yutong Zhao & Kaili Zhang & Jinxiu Yang, 2021. "Measurement of Coupling Coordination Degree and Spatio-Temporal Characteristics of the Social Economy and Ecological Environment in the Chengdu–Chongqing Urban Agglomeration under High-Quality Develop," IJERPH, MDPI, vol. 18(21), pages 1-18, November.
    19. Mihai-Razvan Niță & Ana-Maria Anghel & Cristina Bănescu & Ana-Maria Munteanu & Sabina-Stella Pesamosca & Mihuț Zețu & Ana-Maria Popa, 2018. "Are Romanian urban strategies planning for green?," European Planning Studies, Taylor & Francis Journals, vol. 26(1), pages 158-173, January.
    20. Lili Du & Yunbing Hou & Shuheng Zhong & Kai Qu, 2023. "Identification of Priority Areas for Ecological Restoration in Coal Mining Areas with a High Groundwater Table Based on Ecological Security Pattern and Ecological Vulnerability," Sustainability, MDPI, vol. 16(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:8:y:2019:i:12:p:196-:d:298224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.