IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0008121.html
   My bibliography  Save this article

Improved Reconstruction of In Silico Gene Regulatory Networks by Integrating Knockout and Perturbation Data

Author

Listed:
  • Kevin Y Yip
  • Roger P Alexander
  • Koon-Kiu Yan
  • Mark Gerstein

Abstract

We performed computational reconstruction of the in silico gene regulatory networks in the DREAM3 Challenges. Our task was to learn the networks from two types of data, namely gene expression profiles in deletion strains (the ‘deletion data’) and time series trajectories of gene expression after some initial perturbation (the ‘perturbation data’). In the course of developing the prediction method, we observed that the two types of data contained different and complementary information about the underlying network. In particular, deletion data allow for the detection of direct regulatory activities with strong responses upon the deletion of the regulator while perturbation data provide richer information for the identification of weaker and more complex types of regulation. We applied different techniques to learn the regulation from the two types of data. For deletion data, we learned a noise model to distinguish real signals from random fluctuations using an iterative method. For perturbation data, we used differential equations to model the change of expression levels of a gene along the trajectories due to the regulation of other genes. We tried different models, and combined their predictions. The final predictions were obtained by merging the results from the two types of data. A comparison with the actual regulatory networks suggests that our approach is effective for networks with a range of different sizes. The success of the approach demonstrates the importance of integrating heterogeneous data in network reconstruction.

Suggested Citation

  • Kevin Y Yip & Roger P Alexander & Koon-Kiu Yan & Mark Gerstein, 2010. "Improved Reconstruction of In Silico Gene Regulatory Networks by Integrating Knockout and Perturbation Data," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
  • Handle: RePEc:plo:pone00:0008121
    DOI: 10.1371/journal.pone.0008121
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008121
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0008121&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0008121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ravi S. Kamath & Andrew G. Fraser & Yan Dong & Gino Poulin & Richard Durbin & Monica Gotta & Alexander Kanapin & Nathalie Le Bot & Sergio Moreno & Marc Sohrmann & David P. Welchman & Peder Zipperlen &, 2003. "Systematic functional analysis of the Caenorhabditis elegans genome using RNAi," Nature, Nature, vol. 421(6920), pages 231-237, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takeshi Hase & Samik Ghosh & Ryota Yamanaka & Hiroaki Kitano, 2013. "Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-16, November.
    2. Xiaodong Cai & Juan Andrés Bazerque & Georgios B Giannakis, 2013. "Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-13, May.
    3. Holger Weishaupt & Patrik Johansson & Christopher Engström & Sven Nelander & Sergei Silvestrov & Fredrik J Swartling, 2017. "Loss of Conservation of Graph Centralities in Reverse-engineered Transcriptional Regulatory Networks," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1089-1105, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin-Hyuck Jeong & Jun-Seok Han & Youngae Jung & Seung-Min Lee & So-Hyun Park & Mooncheol Park & Min-Gi Shin & Nami Kim & Mi Sun Kang & Seokho Kim & Kwang-Pyo Lee & Ki-Sun Kwon & Chun-A. Kim & Yong Ryo, 2023. "A new AMPK isoform mediates glucose-restriction induced longevity non-cell autonomously by promoting membrane fluidity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Ichiro Kawasaki & Kenta Sugiura & Taeko Sasaki & Noriyuki Matsuda & Miyuki Sato & Ken Sato, 2024. "MARC-3, a membrane-associated ubiquitin ligase, is required for fast polyspermy block in Caenorhabditis elegans," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Hope Dang & Raul Castro-Portuguez & Luis Espejo & Grant Backer & Samuel Freitas & Erica Spence & Jeremy Meyers & Karissa Shuck & Emily A. Gardea & Leah M. Chang & Jonah Balsa & Niall Thorns & Caroline, 2023. "On the benefits of the tryptophan metabolite 3-hydroxyanthranilic acid in Caenorhabditis elegans and mouse aging," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Arles Urrutia & Víctor A García-Angulo & Andrés Fuentes & Mauricio Caneo & Marcela Legüe & Sebastián Urquiza & Scarlett E Delgado & Juan Ugalde & Paula Burdisso & Andrea Calixto, 2020. "Bacterially produced metabolites protect C. elegans neurons from degeneration," PLOS Biology, Public Library of Science, vol. 18(3), pages 1-31, March.
    5. Klement Stojanovski & Ioana Gheorghe & Peter Lenart & Anne Lanjuin & William B. Mair & Benjamin D. Towbin, 2023. "Maintenance of appropriate size scaling of the C. elegans pharynx by YAP-1," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Svenia D. Heinze & Simon Berger & Stefanie Engleitner & Michael Daube & Alex Hajnal, 2023. "Prolonging somatic cell proliferation through constitutive hox gene expression in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Malaguti, Giulia & Singh, Param Priya & Isambert, Hervé, 2014. "On the retention of gene duplicates prone to dominant deleterious mutations," Theoretical Population Biology, Elsevier, vol. 93(C), pages 38-51.
    8. Saeid Rasti & Chrysafis Vogiatzis, 2019. "A survey of computational methods in protein–protein interaction networks," Annals of Operations Research, Springer, vol. 276(1), pages 35-87, May.
    9. Mustafa C. Camur & Thomas Sharkey & Chrysafis Vogiatzis, 2022. "The Star Degree Centrality Problem: A Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 93-112, January.
    10. Martin Ackermann & Lin Chao, 2006. "DNA Sequences Shaped by Selection for Stability," PLOS Genetics, Public Library of Science, vol. 2(2), pages 1-7, February.
    11. Fanrui Hao & Huimin Liu & Bin Qi, 2024. "Bacterial peptidoglycan acts as a digestive signal mediating host adaptation to diverse food resources in C. elegans," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Chrysafis Vogiatzis & Mustafa Can Camur, 2019. "Identification of Essential Proteins Using Induced Stars in Protein–Protein Interaction Networks," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 703-718, October.
    13. Maria E Gallegos & Sanjeev Balakrishnan & Priya Chandramouli & Shaily Arora & Aruna Azameera & Anitha Babushekar & Emilee Bargoma & Abdulmalik Bokhari & Siva Kumari Chava & Pranti Das & Meetali Desai , 2012. "The C. elegans Rab Family: Identification, Classification and Toolkit Construction," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-19, November.
    14. Wei Cao & Qi Fan & Gemmarie Amparado & Dean Begic & Rasoul Godini & Sandeep Gopal & Roger Pocock, 2024. "A nucleic acid binding protein map of germline regulation in Caenorhabditis elegans," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Christina Rou Hsu & Gaganpreet Sangha & Wayne Fan & Joey Zheng & Kenji Sugioka, 2023. "Contractile ring mechanosensation and its anillin-dependent tuning during early embryogenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    16. Eleonora Khabirova & Aileen Moloney & Stefan J Marciniak & Julie Williams & David A Lomas & Stephen G Oliver & Giorgio Favrin & David B Sattelle & Damian C Crowther, 2014. "The TRiC/CCT Chaperone Is Implicated in Alzheimer's Disease Based on Patient GWAS and an RNAi Screen in Aβ-Expressing Caenorhabditis elegans," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-13, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0008121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.