IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54136-x.html
   My bibliography  Save this article

HSF-1 promotes longevity through ubiquilin-1-dependent mitochondrial network remodelling

Author

Listed:
  • Annmary Paul Erinjeri

    (University College London)

  • Xunyan Wang

    (University College London)

  • Rhianna Williams

    (University College London)

  • Riccardo Zenezini Chiozzi

    (University College London
    University College London)

  • Konstantinos Thalassinos

    (University College London
    University College London
    University of London)

  • Johnathan Labbadia

    (University College London)

Abstract

Increased activity of the heat shock factor, HSF-1, suppresses proteotoxicity and enhances longevity. However, the precise mechanisms by which HSF-1 promotes lifespan are unclear. Using an RNAi screen, we identify ubiquilin-1 (ubql-1) as an essential mediator of lifespan extension in worms overexpressing hsf-1. We find that hsf-1 overexpression leads to transcriptional downregulation of all components of the CDC-48-UFD-1-NPL-4 complex, which is central to both endoplasmic reticulum and mitochondria associated protein degradation, and that this is complemented by UBQL-1-dependent turnover of NPL-4.1. As a consequence, mitochondrial network dynamics are altered, leading to increased lifespan. Together, our data establish that HSF-1 mediates lifespan extension through mitochondrial network adaptations that occur in response to down-tuning of components associated with organellar protein degradation pathways.

Suggested Citation

  • Annmary Paul Erinjeri & Xunyan Wang & Rhianna Williams & Riccardo Zenezini Chiozzi & Konstantinos Thalassinos & Johnathan Labbadia, 2024. "HSF-1 promotes longevity through ubiquilin-1-dependent mitochondrial network remodelling," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54136-x
    DOI: 10.1038/s41467-024-54136-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54136-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54136-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sandrine Etienne-Manneville & Alan Hall, 2002. "Rho GTPases in cell biology," Nature, Nature, vol. 420(6916), pages 629-635, December.
    2. Abigail Watterson & Lexus Tatge & Naureen Wajahat & Sonja L. B. Arneaud & Rene Solano Fonseca & Shaghayegh T. Beheshti & Patrick Metang & Melina Mihelakis & Kielen R. Zuurbier & Chase D. Corley & Ishm, 2022. "Intracellular lipid surveillance by small G protein geranylgeranylation," Nature, Nature, vol. 605(7911), pages 736-740, May.
    3. Cierra N. Sing & Enrique J. Garcia & Thomas G. Lipkin & Thomas M. Huckaba & Catherine A. Tsang & Arielle C. Coughlin & Emily J. Yang & Istvan R. Boldogh & Ryo Higuchi-Sanabria & Liza A. Pon, 2022. "Identification of a modulator of the actin cytoskeleton, mitochondria, nutrient metabolism and lifespan in yeast," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Ravi S. Kamath & Andrew G. Fraser & Yan Dong & Gino Poulin & Richard Durbin & Monica Gotta & Alexander Kanapin & Nathalie Le Bot & Sergio Moreno & Marc Sohrmann & David P. Welchman & Peder Zipperlen &, 2003. "Systematic functional analysis of the Caenorhabditis elegans genome using RNAi," Nature, Nature, vol. 421(6920), pages 231-237, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jocelyn E. Chau & Kimberly J. Vish & Titus J. Boggon & Amy L. Stiegler, 2022. "SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Jin-Hyuck Jeong & Jun-Seok Han & Youngae Jung & Seung-Min Lee & So-Hyun Park & Mooncheol Park & Min-Gi Shin & Nami Kim & Mi Sun Kang & Seokho Kim & Kwang-Pyo Lee & Ki-Sun Kwon & Chun-A. Kim & Yong Ryo, 2023. "A new AMPK isoform mediates glucose-restriction induced longevity non-cell autonomously by promoting membrane fluidity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Ichiro Kawasaki & Kenta Sugiura & Taeko Sasaki & Noriyuki Matsuda & Miyuki Sato & Ken Sato, 2024. "MARC-3, a membrane-associated ubiquitin ligase, is required for fast polyspermy block in Caenorhabditis elegans," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Hope Dang & Raul Castro-Portuguez & Luis Espejo & Grant Backer & Samuel Freitas & Erica Spence & Jeremy Meyers & Karissa Shuck & Emily A. Gardea & Leah M. Chang & Jonah Balsa & Niall Thorns & Caroline, 2023. "On the benefits of the tryptophan metabolite 3-hydroxyanthranilic acid in Caenorhabditis elegans and mouse aging," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Arles Urrutia & Víctor A García-Angulo & Andrés Fuentes & Mauricio Caneo & Marcela Legüe & Sebastián Urquiza & Scarlett E Delgado & Juan Ugalde & Paula Burdisso & Andrea Calixto, 2020. "Bacterially produced metabolites protect C. elegans neurons from degeneration," PLOS Biology, Public Library of Science, vol. 18(3), pages 1-31, March.
    6. Klement Stojanovski & Ioana Gheorghe & Peter Lenart & Anne Lanjuin & William B. Mair & Benjamin D. Towbin, 2023. "Maintenance of appropriate size scaling of the C. elegans pharynx by YAP-1," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Kevin Y Yip & Roger P Alexander & Koon-Kiu Yan & Mark Gerstein, 2010. "Improved Reconstruction of In Silico Gene Regulatory Networks by Integrating Knockout and Perturbation Data," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    8. Limei Wu & Srinivas Chatla & Qiqi Lin & Fabliha Ahmed Chowdhury & Werner Geldenhuys & Wei Du, 2021. "Quinacrine-CASIN combination overcomes chemoresistance in human acute lymphoid leukemia," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. Svenia D. Heinze & Simon Berger & Stefanie Engleitner & Michael Daube & Alex Hajnal, 2023. "Prolonging somatic cell proliferation through constitutive hox gene expression in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Gabriela Casanova-Sepúlveda & Joel A. Sexton & Benjamin E. Turk & Titus J. Boggon, 2023. "Autoregulation of the LIM kinases by their PDZ domain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Malaguti, Giulia & Singh, Param Priya & Isambert, Hervé, 2014. "On the retention of gene duplicates prone to dominant deleterious mutations," Theoretical Population Biology, Elsevier, vol. 93(C), pages 38-51.
    12. Cummings, F.W, 2004. "A model of morphogenesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 531-547.
    13. Steffen Nørgaard & Shuer Deng & Wei Cao & Roger Pocock, 2018. "Distinct CED-10/Rac1 domains confer context-specific functions in development," PLOS Genetics, Public Library of Science, vol. 14(9), pages 1-24, September.
    14. Saeid Rasti & Chrysafis Vogiatzis, 2019. "A survey of computational methods in protein–protein interaction networks," Annals of Operations Research, Springer, vol. 276(1), pages 35-87, May.
    15. Rashmi Priya & Guillermo A Gomez & Srikanth Budnar & Bipul R Acharya & Andras Czirok & Alpha S Yap & Zoltan Neufeld, 2017. "Bistable front dynamics in a contractile medium: Travelling wave fronts and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-19, March.
    16. Yasuo Takashima & Atsushi Kawaguchi & Junya Fukai & Yasuo Iwadate & Koji Kajiwara & Hiroaki Hondoh & Ryuya Yamanaka, 2021. "Survival prediction based on the gene expression associated with cancer morphology and microenvironment in primary central nervous system lymphoma," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-14, June.
    17. Mustafa C. Camur & Thomas Sharkey & Chrysafis Vogiatzis, 2022. "The Star Degree Centrality Problem: A Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 93-112, January.
    18. Serena Petracchini & Daniel Hamaoui & Anne Doye & Atef Asnacios & Florian Fage & Elisa Vitiello & Martial Balland & Sebastien Janel & Frank Lafont & Mukund Gupta & Benoit Ladoux & Jerôme Gilleron & Te, 2022. "Optineurin links Hace1-dependent Rac ubiquitylation to integrin-mediated mechanotransduction to control bacterial invasion and cell division," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    19. Juan Manuel Ortiz-Sanchez & Sara E Nichols & Jacqueline Sayyah & Joan Heller Brown & J Andrew McCammon & Barry J Grant, 2012. "Identification of Potential Small Molecule Binding Pockets on Rho Family GTPases," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-13, July.
    20. Simona Pisanti & Erika Rimondi & Elena Pozza & Elisabetta Melloni & Enrico Zauli & Maurizio Bifulco & Rosanna Martinelli & Annalisa Marcuzzi, 2022. "Prenylation Defects and Oxidative Stress Trigger the Main Consequences of Neuroinflammation Linked to Mevalonate Pathway Deregulation," IJERPH, MDPI, vol. 19(15), pages 1-15, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54136-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.