IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v19y2017i4d10.1007_s11009-017-9554-7.html
   My bibliography  Save this article

Loss of Conservation of Graph Centralities in Reverse-engineered Transcriptional Regulatory Networks

Author

Listed:
  • Holger Weishaupt

    (Uppsala University)

  • Patrik Johansson

    (Uppsala University)

  • Christopher Engström

    (Mälardalen University)

  • Sven Nelander

    (Uppsala University)

  • Sergei Silvestrov

    (Mälardalen University)

  • Fredrik J Swartling

    (Uppsala University)

Abstract

Graph centralities are commonly used to identify and prioritize disease genes in transcriptional regulatory networks. Studies on small networks of experimentally validated protein-protein interactions underpin the general validity of this approach and extensions of such findings have recently been proposed for networks inferred from gene expression data. However, it is largely unknown how well gene centralities are preserved between the underlying biological interactions and the networks inferred from gene expression data. Specifically, while previous studies have evaluated the performance of inference methods on synthetic gene expression, it has not been established how the choice of inference method affects individual centralities in the network. Here, we compare two gene centrality measures between reference networks and networks inferred from corresponding simulated gene expression data, using a number of commonly used network inference methods. The results indicate that the centrality of genes is only moderately conserved for all of the inference methods used. In conclusion, caution should be exercised when inspecting centralities in reverse-engineered networks and further work will be required to establish the use of such networks for prioritizing disease genes.

Suggested Citation

  • Holger Weishaupt & Patrik Johansson & Christopher Engström & Sven Nelander & Sergei Silvestrov & Fredrik J Swartling, 2017. "Loss of Conservation of Graph Centralities in Reverse-engineered Transcriptional Regulatory Networks," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1089-1105, December.
  • Handle: RePEc:spr:metcap:v:19:y:2017:i:4:d:10.1007_s11009-017-9554-7
    DOI: 10.1007/s11009-017-9554-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-017-9554-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-017-9554-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vân Anh Huynh-Thu & Alexandre Irrthum & Louis Wehenkel & Pierre Geurts, 2010. "Inferring Regulatory Networks from Expression Data Using Tree-Based Methods," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-10, September.
    2. F. Pozzi & T. Matteo & T. Aste, 2012. "Exponential smoothing weighted correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(6), pages 1-21, June.
    3. Jeremiah J Faith & Boris Hayete & Joshua T Thaden & Ilaria Mogno & Jamey Wierzbowski & Guillaume Cottarel & Simon Kasif & James J Collins & Timothy S Gardner, 2007. "Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles," PLOS Biology, Public Library of Science, vol. 5(1), pages 1-13, January.
    4. Agostino Tarsitano, 2009. "Comparing The Effectiveness Of Rank Correlation Statistics," Working Papers 200906, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
    5. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    6. Kevin Y Yip & Roger P Alexander & Koon-Kiu Yan & Mark Gerstein, 2010. "Improved Reconstruction of In Silico Gene Regulatory Networks by Integrating Knockout and Perturbation Data," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Grimaldi & Roberto Visintainer & Giuseppe Jurman, 2011. "RegnANN: Reverse Engineering Gene Networks Using Artificial Neural Networks," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-19, December.
    2. Takeshi Hase & Samik Ghosh & Ryota Yamanaka & Hiroaki Kitano, 2013. "Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-16, November.
    3. Ruonan Wu & Michelle R. Davison & William C. Nelson & Montana L. Smith & Mary S. Lipton & Janet K. Jansson & Ryan S. McClure & Jason E. McDermott & Kirsten S. Hofmockel, 2023. "Hi-C metagenome sequencing reveals soil phage–host interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Fei Liu & Shao-Wu Zhang & Wei-Feng Guo & Ze-Gang Wei & Luonan Chen, 2016. "Inference of Gene Regulatory Network Based on Local Bayesian Networks," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-17, August.
    5. Mingyi Wang & Jerome Verdier & Vagner A Benedito & Yuhong Tang & Jeremy D Murray & Yinbing Ge & Jörg D Becker & Helena Carvalho & Christian Rogers & Michael Udvardi & Ji He, 2013. "LegumeGRN: A Gene Regulatory Network Prediction Server for Functional and Comparative Studies," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
    6. Maghsoodi, Masoume, 2016. "A New Method to Build Gene Regulation Network Based on Fuzzy Hierarchical Clustering Methods," MPRA Paper 79743, University Library of Munich, Germany.
    7. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    8. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    9. Wątorek Marcin & Stawiarski Bartosz, 2016. "Log-Periodic Power Law and Generalized Hurst Exponent Analysis in Estimating an Asset Bubble Bursting Time," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 12(3), pages 49-58, October.
    10. Cecilia Pessoa Rodrigues & Aindrila Chatterjee & Meike Wiese & Thomas Stehle & Witold Szymanski & Maria Shvedunova & Asifa Akhtar, 2021. "Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    11. Claudio M. Rocco & Kash Barker & Jose Moronta, 2022. "Determining the best algorithm to detect community structures in networks: application to power systems," Environment Systems and Decisions, Springer, vol. 42(2), pages 251-264, June.
    12. Hossein Zare & Mostafa Kaveh & Arkady Khodursky, 2011. "Inferring a Transcriptional Regulatory Network from Gene Expression Data Using Nonlinear Manifold Embedding," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-7, August.
    13. Diambra, L., 2011. "Coarse-grain reconstruction of genetic networks from expression levels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2198-2207.
    14. Jie Xiong & Tong Zhou, 2012. "Gene Regulatory Network Inference from Multifactorial Perturbation Data Using both Regression and Correlation Analyses," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    15. Musmeci, Nicoló & Aste, Tomaso & Di Matteo, T., 2015. "Relation between financial market structure and the real economy: comparison between clustering methods," LSE Research Online Documents on Economics 61644, London School of Economics and Political Science, LSE Library.
    16. Marius Arend & Yizhong Yuan & M. Águila Ruiz-Sola & Nooshin Omranian & Zoran Nikoloski & Dimitris Petroutsos, 2023. "Widening the landscape of transcriptional regulation of green algal photoprotection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    18. Mariangela Sciandra & Antonella Plaia & Vincenza Capursi, 2017. "Classification trees for multivariate ordinal response: an application to Student Evaluation Teaching," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 641-655, March.
    19. repec:jss:jstsof:37:i01 is not listed on IDEAS
    20. Kinzy Tyler G. & Starr Timothy K. & Tseng George C. & Ho Yen-Yi, 2019. "Meta-analytic framework for modeling genetic coexpression dynamics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(1), pages 1-13, February.
    21. Joeri Ruyssinck & Vân Anh Huynh-Thu & Pierre Geurts & Tom Dhaene & Piet Demeester & Yvan Saeys, 2014. "NIMEFI: Gene Regulatory Network Inference using Multiple Ensemble Feature Importance Algorithms," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:19:y:2017:i:4:d:10.1007_s11009-017-9554-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.