IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0005253.html
   My bibliography  Save this article

The Ordered Extension of Pseudopodia by Amoeboid Cells in the Absence of External Cues

Author

Listed:
  • Leonard Bosgraaf
  • Peter J M Van Haastert

Abstract

Eukaryotic cells extend pseudopodia for movement. In the absence of external cues, cells move in random directions, but with a strong element of persistence that keeps them moving in the same direction Persistence allows cells to disperse over larger areas and is instrumental to enter new environments where spatial cues can lead the cell. Here we explore cell movement by analyzing the direction, size and timing of ∼2000 pseudopodia that are extended by Dictyostelium cells. The results show that pseudpopod are extended perpendicular to the surface curvature at the place where they emerge. The location of new pseudopods is not random but highly ordered. Two types of pseudopodia may be formed: frequent splitting of an existing pseudopod, or the occasional extension of a de novo pseudopod at regions devoid of recent pseudopod activity. Split-pseudopodia are extended at ∼60 degrees relative to the previous pseudopod, mostly as alternating Right/Left/Right steps leading to relatively straight zigzag runs. De novo pseudopodia are extended in nearly random directions thereby interrupting the zigzag runs. Persistence of cell movement is based on the ratio of split versus de novo pseudopodia. We identify PLA2 and cGMP signaling pathways that modulate this ratio of splitting and de novo pseudopodia, and thereby regulate the dispersal of cells. The observed ordered extension of pseudopodia in the absence of external cues provides a fundamental insight into the coordinated movement of cells, and might form the basis for movement that is directed by internal or external cues.

Suggested Citation

  • Leonard Bosgraaf & Peter J M Van Haastert, 2009. "The Ordered Extension of Pseudopodia by Amoeboid Cells in the Absence of External Cues," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-13, April.
  • Handle: RePEc:plo:pone00:0005253
    DOI: 10.1371/journal.pone.0005253
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005253
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0005253&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0005253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas D. Pollard, 2003. "The cytoskeleton, cellular motility and the reductionist agenda," Nature, Nature, vol. 422(6933), pages 741-745, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurent Golé & Charlotte Rivière & Yoshinori Hayakawa & Jean-Paul Rieu, 2011. "A Quorum-Sensing Factor in Vegetative Dictyostelium Discoideum Cells Revealed by Quantitative Migration Analysis," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-9, November.
    2. Peter J M Van Haastert, 2010. "A Model for a Correlated Random Walk Based on the Ordered Extension of Pseudopodia," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-11, August.
    3. Visakan Kadirkamanathan & Sean R Anderson & Stephen A Billings & Xiliang Zhang & Geoffrey R Holmes & Constantino C Reyes-Aldasoro & Philip M Elks & Stephen A Renshaw, 2012. "The Neutrophil's Eye-View: Inference and Visualisation of the Chemoattractant Field Driving Cell Chemotaxis In Vivo," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-11, April.
    4. Robert M Cooper & Ned S Wingreen & Edward C Cox, 2012. "An Excitable Cortex and Memory Model Successfully Predicts New Pseudopod Dynamics," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-12, March.
    5. Can Guven & Erin Rericha & Edward Ott & Wolfgang Losert, 2013. "Modeling and Measuring Signal Relay in Noisy Directed Migration of Cell Groups," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-13, May.
    6. Chopra, Abha & Nanjundiah, Vidyanand, 2013. "The precision with which single cells of Dictyostelium discoideum can locate a source of cyclic AMP," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 3-12.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhu & Alex Mogilner, 2012. "Mesoscopic Model of Actin-Based Propulsion," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-12, November.
    2. Jonathan B Alberts & Garrett M Odell, 2004. "In Silico Reconstitution of Listeria Propulsion Exhibits Nano-Saltation," PLOS Biology, Public Library of Science, vol. 2(12), pages 1-1, November.
    3. Peter J M Van Haastert, 2010. "A Model for a Correlated Random Walk Based on the Ordered Extension of Pseudopodia," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-11, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0005253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.