IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v50y2013icp3-12.html
   My bibliography  Save this article

The precision with which single cells of Dictyostelium discoideum can locate a source of cyclic AMP

Author

Listed:
  • Chopra, Abha
  • Nanjundiah, Vidyanand

Abstract

When stimulated by a point source of cyclic AMP, a starved amoeba of Dictyostelium discoideum responds by putting out a hollow balloon-like membrane extension followed by a pseudopod. The effect of the stimulus is to influence the position where either of these protrusions is made on the cell rather than to cause them to be made. Because the pseudopod forms perpendicular to the cell surface, its location is a measure of the precision with which the cell can locate the cAMP source. Cells beyond 1h of starvation respond non-randomly with a precision that improves steadily thereafter. A cell that is starved for 1–2 h can locate the source accurately 43% of the time; and if starved for 6–7 h, 87% of the time. The response always has a high scatter; population-level heterogeneity reflects stochasticity in single cell behaviour. From the angular distribution of the response its maximum information content is estimated to be 2–3bits. In summary, we quantitatively demonstrate the stochastic nature of the directional response and the increase in its accuracy over time.

Suggested Citation

  • Chopra, Abha & Nanjundiah, Vidyanand, 2013. "The precision with which single cells of Dictyostelium discoideum can locate a source of cyclic AMP," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 3-12.
  • Handle: RePEc:eee:chsofr:v:50:y:2013:i:c:p:3-12
    DOI: 10.1016/j.chaos.2013.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077913000118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2013.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burton W Andrews & Pablo A Iglesias, 2007. "An Information-Theoretic Characterization of the Optimal Gradient Sensing Response of Cells," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-9, August.
    2. Leonard Bosgraaf & Peter J M Van Haastert, 2009. "Navigation of Chemotactic Cells by Parallel Signaling to Pseudopod Persistence and Orientation," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-11, August.
    3. Leonard Bosgraaf & Peter J M Van Haastert, 2009. "The Ordered Extension of Pseudopodia by Amoeboid Cells in the Absence of External Cues," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-13, April.
    4. Robert M Cooper & Ned S Wingreen & Edward C Cox, 2012. "An Excitable Cortex and Memory Model Successfully Predicts New Pseudopod Dynamics," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-12, March.
    5. Liang Li & Simon F Nørrelykke & Edward C Cox, 2008. "Persistent Cell Motion in the Absence of External Signals: A Search Strategy for Eukaryotic Cells," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Can Guven & Erin Rericha & Edward Ott & Wolfgang Losert, 2013. "Modeling and Measuring Signal Relay in Noisy Directed Migration of Cell Groups," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-13, May.
    2. Robert M Cooper & Ned S Wingreen & Edward C Cox, 2012. "An Excitable Cortex and Memory Model Successfully Predicts New Pseudopod Dynamics," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-12, March.
    3. Laurent Golé & Charlotte Rivière & Yoshinori Hayakawa & Jean-Paul Rieu, 2011. "A Quorum-Sensing Factor in Vegetative Dictyostelium Discoideum Cells Revealed by Quantitative Migration Analysis," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-9, November.
    4. Peter J M Van Haastert, 2010. "A Model for a Correlated Random Walk Based on the Ordered Extension of Pseudopodia," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-11, August.
    5. Oliver Nagel & Can Guven & Matthias Theves & Meghan Driscoll & Wolfgang Losert & Carsten Beta, 2014. "Geometry-Driven Polarity in Motile Amoeboid Cells," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-20, December.
    6. Priscila C A da Silva & Tiago V Rosembach & Anésia A Santos & Márcio S Rocha & Marcelo L Martins, 2014. "Normal and Tumoral Melanocytes Exhibit q-Gaussian Random Search Patterns," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    7. Sui Huang, 2016. "Where to Go: Breaking the Symmetry in Cell Motility," PLOS Biology, Public Library of Science, vol. 14(5), pages 1-10, May.
    8. Yusuke T Maeda & Junya Inose & Miki Y Matsuo & Suguru Iwaya & Masaki Sano, 2008. "Ordered Patterns of Cell Shape and Orientational Correlation during Spontaneous Cell Migration," PLOS ONE, Public Library of Science, vol. 3(11), pages 1-14, November.
    9. Taeseok Daniel Yang & Jin-Sung Park & Youngwoon Choi & Wonshik Choi & Tae-Wook Ko & Kyoung J Lee, 2011. "Zigzag Turning Preference of Freely Crawling Cells," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-9, June.
    10. Visakan Kadirkamanathan & Sean R Anderson & Stephen A Billings & Xiliang Zhang & Geoffrey R Holmes & Constantino C Reyes-Aldasoro & Philip M Elks & Stephen A Renshaw, 2012. "The Neutrophil's Eye-View: Inference and Visualisation of the Chemoattractant Field Driving Cell Chemotaxis In Vivo," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-11, April.
    11. Murguía, J.S. & Rosu, H.C. & Jimenez, A. & Gutiérrez-Medina, B. & García-Meza, J.V., 2015. "The Hurst exponents of Nitzschia sp. diatom trajectories observed by light microscopy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 176-184.
    12. Toman, Kellan & Voulgarakis, Nikolaos K., 2022. "Stochastic pursuit-evasion curves for foraging dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    13. Pau Urdeitx & Mohamed H. Doweidar, 2020. "A Computational Model for Cardiomyocytes Mechano-Electric Stimulation to Enhance Cardiac Tissue Regeneration," Mathematics, MDPI, vol. 8(11), pages 1-23, October.
    14. Hélia Serrano & Ramón F. Álvarez-Estrada, 2023. "Characterization of the Mean First-Passage Time Function Subject to Advection in Annular-like Domains," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
    15. Peter J M Van Haastert, 2011. "Amoeboid Cells Use Protrusions for Walking, Gliding and Swimming," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-5, November.
    16. de Almeida, Rita M.C. & Giardini, Guilherme S.Y. & Vainstein, Mendeli & Glazier, James A. & Thomas, Gilberto L., 2022. "Exact solution for the Anisotropic Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    17. Azevedo, T.N. & Rizzi, L.G., 2022. "Time-correlated forces and biological variability in cell motility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:50:y:2013:i:c:p:3-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.