IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/0020412.html
   My bibliography  Save this article

In Silico Reconstitution of Listeria Propulsion Exhibits Nano-Saltation

Author

Listed:
  • Jonathan B Alberts
  • Garrett M Odell

Abstract

To understand how the actin-polymerization-mediated movements in cells emerge from myriad individual protein–protein interactions, we developed a computational model of Listeria monocytogenes propulsion that explicitly simulates a large number of monomer-scale biochemical and mechanical interactions. The literature on actin networks and L. monocytogenes motility provides the foundation for a realistic mathematical/computer simulation, because most of the key rate constants governing actin network dynamics have been measured. We use a cluster of 80 Linux processors and our own suite of simulation and analysis software to characterize salient features of bacterial motion. Our “in silico reconstitution” produces qualitatively realistic bacterial motion with regard to speed and persistence of motion and actin tail morphology. The model also produces smaller scale emergent behavior; we demonstrate how the observed nano-saltatory motion of L. monocytogenes, in which runs punctuate pauses, can emerge from a cooperative binding and breaking of attachments between actin filaments and the bacterium. We describe our modeling methodology in detail, as it is likely to be useful for understanding any subcellular system in which the dynamics of many simple interactions lead to complex emergent behavior, e.g., lamellipodia and filopodia extension, cellular organization, and cytokinesis. A detailed computer simulation explicitly simulates monomer- scale biochemical and mechanical interactions to characterize bacterial motion.

Suggested Citation

  • Jonathan B Alberts & Garrett M Odell, 2004. "In Silico Reconstitution of Listeria Propulsion Exhibits Nano-Saltation," PLOS Biology, Public Library of Science, vol. 2(12), pages 1-1, November.
  • Handle: RePEc:plo:pbio00:0020412
    DOI: 10.1371/journal.pbio.0020412
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0020412
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.0020412&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.0020412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas D. Pollard, 2003. "The cytoskeleton, cellular motility and the reductionist agenda," Nature, Nature, vol. 422(6933), pages 741-745, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Zhu & Alex Mogilner, 2012. "Mesoscopic Model of Actin-Based Propulsion," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-12, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhu & Alex Mogilner, 2012. "Mesoscopic Model of Actin-Based Propulsion," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-12, November.
    2. Peter J M Van Haastert, 2010. "A Model for a Correlated Random Walk Based on the Ordered Extension of Pseudopodia," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-11, August.
    3. Leonard Bosgraaf & Peter J M Van Haastert, 2009. "The Ordered Extension of Pseudopodia by Amoeboid Cells in the Absence of External Cues," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-13, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:0020412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.