IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v166y2023ics0960077922010724.html
   My bibliography  Save this article

Remote synchronization in multi-layered community networks with star-like topology

Author

Listed:
  • Cao, Haoyu
  • Yang, Zhiyin
  • Liu, Zonghua

Abstract

Remote synchronization (RS) is currently a hot topic in the fields of nonlinear science and complex network and has a close relationship with signal propagation in brain networks. So far, most studies of RS are focused on star graphs. However, realistic networks with RS are much more complicated than a purely star graph, such as various cognitive networks in human brain. Thus, we here present a model of multi-layered community network to extend the study of RS from star graphs to star-like community topologies, i.e. each node of star graph becoming a community. We find that RS may appear in this multi-layered network model, provided that the hub community has a stronger coupling while the leaf communities have a weaker coupling. A measure of RS is introduced to investigate the influence of key parameters such as the frequency distributions, network size, and natural frequency difference between the hub and leaf layers. Moreover, these results have been confirmed in the sub-networks from a real brain network. And a brief theoretical analysis is provided to explain the mechanism of RS in multi-layered community networks.

Suggested Citation

  • Cao, Haoyu & Yang, Zhiyin & Liu, Zonghua, 2023. "Remote synchronization in multi-layered community networks with star-like topology," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922010724
    DOI: 10.1016/j.chaos.2022.112893
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922010724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pieter R. Roelfsema & Andreas K. Engel & Peter König & Wolf Singer, 1997. "Visuomotor integration is associated with zero time-lag synchronization among cortical areas," Nature, Nature, vol. 385(6612), pages 157-161, January.
    2. Eugenio Rodriguez & Nathalie George & Jean-Philippe Lachaux & Jacques Martinerie & Bernard Renault & Francisco J. Varela, 1999. "Perception's shadow: long-distance synchronization of human brain activity," Nature, Nature, vol. 397(6718), pages 430-433, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, XinYue & Li, Fan & Liu, Shuai & Zou, Wei, 2023. "Emergent behavior of conjugate-coupled Stuart–Landau oscillators in directed star networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    2. Wang, Xinyi & Zhang, Xiyun & Zheng, Muhua & Xu, Leijun & Xu, Kesheng, 2023. "Noise-induced coexisting firing patterns in hybrid-synaptic interacting networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    3. Shen, Qiwei & Liu, Zonghua, 2023. "Unidirectional links prefer local firing propagation in the neural network of C. elegans," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yong & Ding, Qianming & Huang, Weifang & Hu, Xueyan & Ye, Zhiqiu & Jia, Ya, 2024. "Dynamic modulation of external excitation enhance synchronization in complex neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Erfan Zabeh & Nicholas C. Foley & Joshua Jacobs & Jacqueline P. Gottlieb, 2023. "Beta traveling waves in monkey frontal and parietal areas encode recent reward history," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Deng, Bin & Deng, Yun & Yu, Haitao & Guo, Xinmeng & Wang, Jiang, 2016. "Dependence of inter-neuronal effective connectivity on synchrony dynamics in neuronal network motifs," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 48-59.
    4. Adeeti Aggarwal & Connor Brennan & Jennifer Luo & Helen Chung & Diego Contreras & Max B. Kelz & Alex Proekt, 2022. "Visual evoked feedforward–feedback traveling waves organize neural activity across the cortical hierarchy in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Wu, Huagan & Bian, Yixuan & Zhang, Yunzhen & Guo, Yixuan & Xu, Quan & Chen, Mo, 2023. "Multi-stable states and synchronicity of a cellular neural network with memristive activation function," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    6. Wang, Jing & Ye, Weijie & Liu, Shenquan & Lu, Bo & Jiang, Xiaofang, 2016. "Qualitative and quantitative aspects of synchronization in coupled CA1 pyramidal neurons," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 32-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922010724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.