IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0009042.html
   My bibliography  Save this article

Latent Class Analysis: Insights about design and analysis of schistosomiasis diagnostic studies

Author

Listed:
  • Artemis Koukounari
  • Haziq Jamil
  • Elena Erosheva
  • Clive Shiff
  • Irini Moustaki

Abstract

Various global health initiatives are currently advocating the elimination of schistosomiasis within the next decade. Schistosomiasis is a highly debilitating tropical infectious disease with severe burden of morbidity and thus operational research accurately evaluating diagnostics that quantify the epidemic status for guiding effective strategies is essential. Latent class models (LCMs) have been generally considered in epidemiology and in particular in recent schistosomiasis diagnostic studies as a flexible tool for evaluating diagnostics because assessing the true infection status (via a gold standard) is not possible. However, within the biostatistics literature, classical LCM have already been criticised for real-life problems under violation of the conditional independence (CI) assumption and when applied to a small number of diagnostics (i.e. most often 3-5 diagnostic tests). Solutions of relaxing the CI assumption and accounting for zero-inflation, as well as collecting partial gold standard information, have been proposed, offering the potential for more robust model estimates. In the current article, we examined such approaches in the context of schistosomiasis via analysis of two real datasets and extensive simulation studies. Our main conclusions highlighted poor model fit in low prevalence settings and the necessity of collecting partial gold standard information in such settings in order to improve the accuracy and reduce bias of sensitivity and specificity estimates.Author summary: Accurate schistosomiasis diagnosis is essential to assess the impact of large scale and repeated mass drug administration to control or even eliminate this disease. However, in schistosomiasis diagnostic studies, several inherent study design issues pose a real challenge for the currently available statistical tools used for diagnostic modelling and associated data analysis and conclusions. More specifically, those study design issues are: 1) the inclusion of small number of diagnostic tests (i.e. most often five), 2) non formal consensus about a schistosomiasis gold standard, 3) the contemporary use of relatively small sample sizes in relevant studies due to lack of research funding, 4) the differing levels of prevalence of the studied disease even within the same area of one endemic country and 5) other real world factors such as: the lack of appropriate equipment, the variability of certain methods due to biological phenomena and training of technicians across the endemic countries because of scarce financial resources contributing to the existing lack of a schistosomiasis gold standard. The current study aims to caution practitioners from blindly applying statistical models with small number of diagnostic tests and sample sizes, proposing design guidelines of future schistosomiasis diagnostic accuracy studies with recommendations for further research. While our study is centred around the diagnosis of schistosomiasis, we feel that the recommendations can be adapted to other major tropical infectious diseases as well.

Suggested Citation

  • Artemis Koukounari & Haziq Jamil & Elena Erosheva & Clive Shiff & Irini Moustaki, 2021. "Latent Class Analysis: Insights about design and analysis of schistosomiasis diagnostic studies," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(2), pages 1-23, February.
  • Handle: RePEc:plo:pntd00:0009042
    DOI: 10.1371/journal.pntd.0009042
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0009042
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0009042&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0009042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0009042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.