IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v66y2010i4p1266-1274.html
   My bibliography  Save this article

Bayesian Estimation of the Time-Varying Sensitivity of a Diagnostic Test with Application to Mother-to-Child Transmission of HIV

Author

Listed:
  • Elizabeth R. Brown

Abstract

No abstract is available for this item.

Suggested Citation

  • Elizabeth R. Brown, 2010. "Bayesian Estimation of the Time-Varying Sensitivity of a Diagnostic Test with Application to Mother-to-Child Transmission of HIV," Biometrics, The International Biometric Society, vol. 66(4), pages 1266-1274, December.
  • Handle: RePEc:bla:biomet:v:66:y:2010:i:4:p:1266-1274
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2010.01398.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Gupte & R. Brookmeyer & R. Bollinger & G. Gray, 2007. "Modeling Maternal–Infant HIV Transmission in the Presence of Breastfeeding with an Imperfect Test," Biometrics, The International Biometric Society, vol. 63(4), pages 1189-1197, December.
    2. Nandini Dendukuri & Lawrence Joseph, 2001. "Bayesian Approaches to Modeling the Conditional Dependence Between Multiple Diagnostic Tests," Biometrics, The International Biometric Society, vol. 57(1), pages 158-167, March.
    3. Raji Balasubramanian & Stephen W. Lagakos, 2001. "Estimation of the Timing of Perinatal Transmission of HIV," Biometrics, The International Biometric Society, vol. 57(4), pages 1048-1058, December.
    4. R. Balasubramanian, 2003. "Estimation of a failure time distribution based on imperfect diagnostic tests," Biometrika, Biometrika Trust, vol. 90(1), pages 171-182, March.
    5. Paul S. Albert & Lori E. Dodd, 2004. "A Cautionary Note on the Robustness of Latent Class Models for Estimating Diagnostic Error without a Gold Standard," Biometrics, The International Biometric Society, vol. 60(2), pages 427-435, June.
    6. Paul S. Albert & Lisa M. McShane & Joanna H. Shih, 2001. "Latent Class Modeling Approaches for Assessing Diagnostic Error without a Gold Standard: With Applications to p53 Immunohistochemical Assays in Bladder Tumors," Biometrics, The International Biometric Society, vol. 57(2), pages 610-619, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul S. Albert, 2007. "Random Effects Modeling Approaches for Estimating ROC Curves from Repeated Ordinal Tests without a Gold Standard," Biometrics, The International Biometric Society, vol. 63(2), pages 593-602, June.
    2. N. Gupte & R. Brookmeyer & R. Bollinger & G. Gray, 2007. "Modeling Maternal–Infant HIV Transmission in the Presence of Breastfeeding with an Imperfect Test," Biometrics, The International Biometric Society, vol. 63(4), pages 1189-1197, December.
    3. O’Neill, Donal, 2015. "Measuring obesity in the absence of a gold standard," Economics & Human Biology, Elsevier, vol. 17(C), pages 116-128.
    4. Leandro García Barrado & Els Coart & Tomasz Burzykowski, 2017. "Estimation of diagnostic accuracy of a combination of continuous biomarkers allowing for conditional dependence between the biomarkers and the imperfect reference-test," Biometrics, The International Biometric Society, vol. 73(2), pages 646-655, June.
    5. Clara Drew & Moses Badio & Dehkontee Dennis & Lisa Hensley & Elizabeth Higgs & Michael Sneller & Mosoka Fallah & Cavan Reilly, 2023. "Simplifying the estimation of diagnostic testing accuracy over time for high specificity tests in the absence of a gold standard," Biometrics, The International Biometric Society, vol. 79(2), pages 1546-1558, June.
    6. Geoffrey Jones & Wesley O. Johnson & Timothy E. Hanson & Ronald Christensen, 2010. "Identifiability of Models for Multiple Diagnostic Testing in the Absence of a Gold Standard," Biometrics, The International Biometric Society, vol. 66(3), pages 855-863, September.
    7. Chinyereugo M Umemneku Chikere & Kevin Wilson & Sara Graziadio & Luke Vale & A Joy Allen, 2019. "Diagnostic test evaluation methodology: A systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard – An update," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-25, October.
    8. Raji Balasubramanian & Stephen W. Lagakos, 2004. "Analyzing Time-to-Event Data in a Clinical Trial When an Unknown Proportion of Subjects Has Experienced the Event at Entry," Biometrics, The International Biometric Society, vol. 60(2), pages 335-343, June.
    9. Bruce D. Spencer, 2012. "When Do Latent Class Models Overstate Accuracy for Diagnostic and Other Classifiers in the Absence of a Gold Standard?," Biometrics, The International Biometric Society, vol. 68(2), pages 559-566, June.
    10. Liu, Wei & Zhang, Bo & Zhang, Zhiwei & Chen, Baojiang & Zhou, Xiao-Hua, 2015. "A pseudo-likelihood approach for estimating diagnostic accuracy of multiple binary medical tests," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 85-98.
    11. Bo Zhang & Zhen Chen & Paul S. Albert, 2012. "Estimating Diagnostic Accuracy of Raters Without a Gold Standard by Exploiting a Group of Experts," Biometrics, The International Biometric Society, vol. 68(4), pages 1294-1302, December.
    12. Pankaj Patel & Sherry Thatcher & Katerina Bezrukova, 2013. "Organizationally-relevant configurations: the value of modeling local dependence," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(1), pages 287-311, January.
    13. Paul S. Albert & Lori E. Dodd, 2004. "A Cautionary Note on the Robustness of Latent Class Models for Estimating Diagnostic Error without a Gold Standard," Biometrics, The International Biometric Society, vol. 60(2), pages 427-435, June.
    14. Donal O'Neill & Olive Sweetman, 2013. "Estimating Obesity Rates in Europe in the Presence of Self-Reporting Errors," Economics Department Working Paper Series n236-13.pdf, Department of Economics, National University of Ireland - Maynooth.
    15. Nandini Dendukuri & Ian Schiller & Lawrence Joseph & Madhukar Pai, 2012. "Bayesian Meta-Analysis of the Accuracy of a Test for Tuberculous Pleuritis in the Absence of a Gold Standard Reference," Biometrics, The International Biometric Society, vol. 68(4), pages 1285-1293, December.
    16. Adam Branscum & Timothy Hanson & Ian Gardner, 2008. "Bayesian non-parametric models for regional prevalence estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(5), pages 567-582.
    17. Geoffrey Jones & Wesley O. Johnson, 2016. "A Bayesian Superpopulation Approach to Inference for Finite Populations Based on Imperfect Diagnostic Outcomes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(2), pages 314-327, June.
    18. Hae-Young Kim & Michael G. Hudgens & Jonathan M. Dreyfuss & Daniel J. Westreich & Christopher D. Pilcher, 2007. "Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error," Biometrics, The International Biometric Society, vol. 63(4), pages 1152-1163, December.
    19. Fabio Principato & Angela Vullo & Domenica Matranga, 2010. "On implementation of the Gibbs sampler for estimating the accuracy of multiple diagnostic tests," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1335-1354.
    20. Yi Xiong & W. John Braun & X. Joan Hu, 2021. "Estimating duration distribution aided by auxiliary longitudinal measures in presence of missing time origin," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 388-412, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:66:y:2010:i:4:p:1266-1274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.