IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i7p1407-1412.html
   My bibliography  Save this article

Conditional dependence diagnostic in the latent class model: A simulation study

Author

Listed:
  • Subtil, Ana
  • de Oliveira, M. Rosário
  • Gonçalves, Luzia

Abstract

The classical latent class model assumes the hypothesis of conditional independence. We explore tools commonly used to validate this hypothesis (correlation residual plot, log-odds ratio check plot, and known goodness of fit tests) to make practitioners aware of these tools’ shortcomings in correctly identifying local dependence.

Suggested Citation

  • Subtil, Ana & de Oliveira, M. Rosário & Gonçalves, Luzia, 2012. "Conditional dependence diagnostic in the latent class model: A simulation study," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1407-1412.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1407-1412
    DOI: 10.1016/j.spl.2012.03.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521200123X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.03.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Formann, Anton K., 2003. "Latent class model diagnostics--a review and some proposals," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 549-559, January.
    2. Elizabeth S. Garrett & Scott L. Zeger, 2000. "Latent Class Model Diagnosis," Biometrics, The International Biometric Society, vol. 56(4), pages 1055-1067, December.
    3. Broniatowski, Michel & Keziou, Amor, 2009. "Parametric estimation and tests through divergences and the duality technique," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 16-36, January.
    4. Paul S. Albert & Lori E. Dodd, 2004. "A Cautionary Note on the Robustness of Latent Class Models for Estimating Diagnostic Error without a Gold Standard," Biometrics, The International Biometric Society, vol. 60(2), pages 427-435, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiping Xu & Xiaochun Li & Zuoyi Zhang & Shaun Grannis, 2022. "Score test for assessing the conditional dependence in latent class models and its application to record linkage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1663-1687, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiping Xu & Xiaochun Li & Zuoyi Zhang & Shaun Grannis, 2022. "Score test for assessing the conditional dependence in latent class models and its application to record linkage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1663-1687, November.
    2. Donal O'Neill & Olive Sweetman, 2013. "Estimating Obesity Rates in Europe in the Presence of Self-Reporting Errors," Economics Department Working Paper Series n236-13.pdf, Department of Economics, National University of Ireland - Maynooth.
    3. Yan Feng & Erpeng Liu & Zhang Yue & Qilin Zhang & Tiankuo Han, 2019. "The Evolutionary Trends of Health Behaviors in Chinese Elderly and the Influencing Factors of These Trends: 2005–2014," IJERPH, MDPI, vol. 16(10), pages 1-17, May.
    4. Hwan Chung & Brian P. Flaherty & Joseph L. Schafer, 2006. "Latent class logistic regression: application to marijuana use and attitudes among high school seniors," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 723-743, October.
    5. Sarrias, Mauricio, 2021. "A two recursive equation model to correct for endogeneity in latent class binary probit models," Journal of choice modelling, Elsevier, vol. 40(C).
    6. Gioacchino Fazio & Francesca Giambona & Erasmo Vassallo & Elli Vassiliadis, 2018. "A Measure of Trust: The Italian Regional Divide in a Latent Class Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 140(1), pages 209-242, November.
    7. Clara Drew & Moses Badio & Dehkontee Dennis & Lisa Hensley & Elizabeth Higgs & Michael Sneller & Mosoka Fallah & Cavan Reilly, 2023. "Simplifying the estimation of diagnostic testing accuracy over time for high specificity tests in the absence of a gold standard," Biometrics, The International Biometric Society, vol. 79(2), pages 1546-1558, June.
    8. Chinyereugo M Umemneku Chikere & Kevin Wilson & Sara Graziadio & Luke Vale & A Joy Allen, 2019. "Diagnostic test evaluation methodology: A systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard – An update," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-25, October.
    9. Kenneth W. Griffin & Lawrence M. Scheier & Bianca Acevedo & Jerry L. Grenard & Gilbert J. Botvin, 2011. "Long-Term Effects of Self-Control on Alcohol Use and Sexual Behavior among Urban Minority Young Women," IJERPH, MDPI, vol. 9(1), pages 1-23, December.
    10. Chia-Yi Chiu & Yan Sun & Yanhong Bian, 2018. "Cognitive Diagnosis for Small Educational Programs: The General Nonparametric Classification Method," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 355-375, June.
    11. Brian Neelon & A. James O'Malley & Sharon-Lise T. Normand, 2011. "A Bayesian Two-Part Latent Class Model for Longitudinal Medical Expenditure Data: Assessing the Impact of Mental Health and Substance Abuse Parity," Biometrics, The International Biometric Society, vol. 67(1), pages 280-289, March.
    12. Bruce D. Spencer, 2012. "When Do Latent Class Models Overstate Accuracy for Diagnostic and Other Classifiers in the Absence of a Gold Standard?," Biometrics, The International Biometric Society, vol. 68(2), pages 559-566, June.
    13. O’Neill, Donal, 2015. "Measuring obesity in the absence of a gold standard," Economics & Human Biology, Elsevier, vol. 17(C), pages 116-128.
    14. Galina Williams, 2015. "Households Willingness to Pay for the Emissions Reduction Policy, Queensland, Australia," SAGE Open, , vol. 5(3), pages 21582440156, September.
    15. Beth A. Reboussin & Nicholas S. Ialongo, 2010. "Latent transition models with latent class predictors: attention deficit hyperactivity disorder subtypes and high school marijuana use," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 145-164, January.
    16. Zhenke Wu & Livia Casciola‐Rosen & Antony Rosen & Scott L. Zeger, 2021. "A Bayesian approach to restricted latent class models for scientifically structured clustering of multivariate binary outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1431-1444, December.
    17. Nir Billfeld & Moshe Kim, 2019. "Semiparametric correction for endogenous truncation bias with Vox Populi based participation decision," Papers 1902.06286, arXiv.org.
    18. Labbe Aurelie & Bureau Alexandre & Merette Chantal, 2009. "Integration of Genetic Familial Dependence Structure in Latent Class Models," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-30, January.
    19. Benjamin E. Leiby & Mary D. Sammel & Thomas R. Ten Have & Kevin G. Lynch, 2009. "Identification of multivariate responders and non‐responders by using Bayesian growth curve latent class models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 505-524, September.
    20. Bo Zhang & Zhen Chen & Paul S. Albert, 2012. "Estimating Diagnostic Accuracy of Raters Without a Gold Standard by Exploiting a Group of Experts," Biometrics, The International Biometric Society, vol. 68(4), pages 1294-1302, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1407-1412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.