IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1007763.html
   My bibliography  Save this article

Metabolic adaptations underlying genome flexibility in prokaryotes

Author

Listed:
  • Akshit Goyal

Abstract

Even across genomes of the same species, prokaryotes exhibit remarkable flexibility in gene content. We do not know whether this flexible or “accessory” content is mostly neutral or adaptive, largely due to the lack of explicit analyses of accessory gene function. Here, across 96 diverse prokaryotic species, I show that a considerable fraction (~40%) of accessory genomes harbours beneficial metabolic functions. These functions take two forms: (1) they significantly expand the biosynthetic potential of individual strains, and (2) they help reduce strain-specific metabolic auxotrophies via intra-species metabolic exchanges. I find that the potential of both these functions increases with increasing genome flexibility. Together, these results are consistent with a significant adaptive role for prokaryotic pangenomes.Author summary: Recent and rapid advancements in genome sequencing technologies have revealed key insights into the world of bacteria and archaea. One puzzling aspect uncovered by these studies is the following: genomes of the same species can often look very different. Specifically, some “core” genes are maintained across all intraspecies genomes, but many “accessory” genes differ between strains. A major ongoing debate thus asks: do most of these accessory genes provide a benefit to different strains, and if so, in what form? In this study, I suggest that the answer is “yes, through metabolic interactions”. I show that many accessory genes provide significant metabolic advantages to different strains in different conditions. I achieve this by explicitly conducting a large-scale systematic analysis of 1,339 genomes across 96 diverse species of bacteria and archaea. A surprising prediction of this study that in many ecological niches, co-occurring strains of the same species may help each other survive by exchanging metabolites exclusively produced by these different accessory genes. More pronounced gene differences lead to more underlying metabolic advantages.

Suggested Citation

  • Akshit Goyal, 2018. "Metabolic adaptations underlying genome flexibility in prokaryotes," PLOS Genetics, Public Library of Science, vol. 14(10), pages 1-15, October.
  • Handle: RePEc:plo:pgen00:1007763
    DOI: 10.1371/journal.pgen.1007763
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007763
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1007763&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1007763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rene Niehus & Sara Mitri & Alexander G. Fletcher & Kevin R. Foster, 2015. "Migration and horizontal gene transfer divide microbial genomes into multiple niches," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charlotte Ramon & Jörg Stelling, 2023. "Functional comparison of metabolic networks across species," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klimenko, Alexandra I. & Matushkin, Yury G. & Kolchanov, Nikolay A. & Lashin, Sergey A., 2019. "Spatial heterogeneity promotes antagonistic evolutionary scenarios in microbial community explained by ecological stratification: a simulation study," Ecological Modelling, Elsevier, vol. 399(C), pages 66-76.
    2. Suzanne Humphrey & Alfred Fillol-Salom & Nuria Quiles-Puchalt & Rodrigo Ibarra-Chávez & Andreas F. Haag & John Chen & José R. Penadés, 2021. "Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Pekka Marttinen & William P Hanage, 2017. "Speciation trajectories in recombining bacterial species," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-15, July.
    4. Shiben Zhu & Juken Hong & Teng Wang, 2024. "Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Vit Piskovsky & Nuno M. Oliveira, 2023. "Bacterial motility can govern the dynamics of antibiotic resistance evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Cameron J. Reid & Max L. Cummins & Stefan Börjesson & Michael S. M. Brouwer & Henrik Hasman & Anette M. Hammerum & Louise Roer & Stefanie Hess & Thomas Berendonk & Kristina Nešporová & Marisa Haenni &, 2022. "A role for ColV plasmids in the evolution of pathogenic Escherichia coli ST58," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1007763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.