IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45154-w.html
   My bibliography  Save this article

Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species

Author

Listed:
  • Shiben Zhu

    (Chinese Academy of Sciences)

  • Juken Hong

    (Chinese Academy of Sciences)

  • Teng Wang

    (Chinese Academy of Sciences)

Abstract

Natural microbial ecosystems harbor substantial diversity of competing species. Explaining such diversity is challenging, because in classic theories it is extremely infeasible for a large community of competing species to stably coexist in homogeneous environments. One important aspect mostly overlooked in these theories, however, is that microbes commonly share genetic materials with their neighbors through horizontal gene transfer (HGT), which enables the dynamic change of species growth rates due to the fitness effects of the mobile genetic elements (MGEs). Here, we establish a framework of species competition by accounting for the dynamic gene flow among competing microbes. Combining theoretical derivation and numerical simulations, we show that in many conditions HGT can surprisingly overcome the biodiversity limit predicted by the classic model and allow the coexistence of many competitors, by enabling dynamic neutrality of competing species. In contrast with the static neutrality proposed by previous theories, the diversity maintained by HGT is highly stable against random perturbations of microbial fitness. Our work highlights the importance of considering gene flow when addressing fundamental ecological questions in the world of microbes and has broad implications for the design and engineering of complex microbial consortia.

Suggested Citation

  • Shiben Zhu & Juken Hong & Teng Wang, 2024. "Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45154-w
    DOI: 10.1038/s41467-024-45154-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45154-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45154-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. I. L. Brito & S. Yilmaz & K. Huang & L. Xu & S. D. Jupiter & A. P. Jenkins & W. Naisilisili & M. Tamminen & C. S. Smillie & J. R. Wortman & B. W. Birren & R. J. Xavier & P. C. Blainey & A. K. Singh & , 2016. "Mobile genes in the human microbiome are structured from global to individual scales," Nature, Nature, vol. 535(7612), pages 435-439, July.
    2. Jacopo Grilli & Matteo Adorisio & Samir Suweis & György Barabás & Jayanth R. Banavar & Stefano Allesina & Amos Maritan, 2017. "Feasibility and coexistence of large ecological communities," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    3. Stefano Allesina & Jacopo Grilli & György Barabás & Si Tang & Johnatan Aljadeff & Amos Maritan, 2015. "Predicting the stability of large structured food webs," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    4. Fabrizia Ronco & Michael Matschiner & Astrid Böhne & Anna Boila & Heinz H. Büscher & Athimed El Taher & Adrian Indermaur & Milan Malinsky & Virginie Ricci & Ansgar Kahmen & Sissel Jentoft & Walter Sal, 2021. "Drivers and dynamics of a massive adaptive radiation in cichlid fishes," Nature, Nature, vol. 589(7840), pages 76-81, January.
    5. Rene Niehus & Sara Mitri & Alexander G. Fletcher & Kevin R. Foster, 2015. "Migration and horizontal gene transfer divide microbial genomes into multiple niches," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    6. Michael Manhart & Eugene I. Shakhnovich, 2018. "Growth tradeoffs produce complex microbial communities on a single limiting resource," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    7. Stefano Allesina & Si Tang, 2012. "Stability criteria for complex ecosystems," Nature, Nature, vol. 483(7388), pages 205-208, March.
    8. Allison J. Lopatkin & Hannah R. Meredith & Jaydeep K. Srimani & Connor Pfeiffer & Rick Durrett & Lingchong You, 2017. "Persistence and reversal of plasmid-mediated antibiotic resistance," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    9. Jen Nguyen & Vicente Fernandez & Sammy Pontrelli & Uwe Sauer & Martin Ackermann & Roman Stocker, 2021. "A distinct growth physiology enhances bacterial growth under rapid nutrient fluctuations," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    10. Silvia G. Acinas & Vanja Klepac-Ceraj & Dana E. Hunt & Chanathip Pharino & Ivica Ceraj & Daniel L. Distel & Martin F. Polz, 2004. "Fine-scale phylogenetic architecture of a complex bacterial community," Nature, Nature, vol. 430(6999), pages 551-554, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clenet, Maxime & El Ferchichi, Hafedh & Najim, Jamal, 2022. "Equilibrium in a large Lotka–Volterra system with pairwise correlated interactions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 423-444.
    2. Wang, Xiangrong & Peron, Thomas & Dubbeldam, Johan L.A. & Kéfi, Sonia & Moreno, Yamir, 2023. "Interspecific competition shapes the structural stability of mutualistic networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Ricciardi, Gianmarco & Montagna, Guido & Caldarelli, Guido & Cimini, Giulio, 2023. "Dimensional reduction of solvency contagion dynamics on financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. Yuguang Yang & Katharine Z. Coyte & Kevin R. Foster & Aming Li, 2023. "Reactivity of complex communities can be more important than stability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Peter J. Diebold & Matthew W. Rhee & Qiaojuan Shi & Nguyen Vinh Trung & Fayaz Umrani & Sheraz Ahmed & Vandana Kulkarni & Prasad Deshpande & Mallika Alexander & Ngo Hoa & Nicholas A. Christakis & Najee, 2023. "Clinically relevant antibiotic resistance genes are linked to a limited set of taxa within gut microbiome worldwide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Li, Fei & Kang, Hao & Xu, Jingfeng, 2022. "Financial stability and network complexity: A random matrix approach," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 177-185.
    7. Bastazini, Vinicius Augusto Galvão & Debastiani, Vanderlei & Cappelatti, Laura & Guimarães, Paulo & Pillar, Valério D., 2022. "The role of evolutionary modes for trait-based cascades in mutualistic networks," Ecological Modelling, Elsevier, vol. 470(C).
    8. Chen, Weidong & Xiong, Shi & Chen, Quanyu, 2022. "Characterizing the dynamic evolutionary behavior of multivariate price movement fluctuation in the carbon-fuel energy markets system from complex network perspective," Energy, Elsevier, vol. 239(PA).
    9. Seungchul Baek & Junyong Park, 2022. "A computationally efficient approach to estimating species richness and rarefaction curve," Computational Statistics, Springer, vol. 37(4), pages 1919-1941, September.
    10. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    11. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    12. Xindong Cui & Matt Friedman & Tuo Qiao & Yilun Yu & Min Zhu, 2022. "The rapid evolution of lungfish durophagy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Zhu, Haoqi & Wang, Maoxiang & Hu, Fenglan, 2018. "Interaction and coexistence with self-regulating species," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 447-458.
    14. Suzanne Humphrey & Alfred Fillol-Salom & Nuria Quiles-Puchalt & Rodrigo Ibarra-Chávez & Andreas F. Haag & John Chen & José R. Penadés, 2021. "Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    15. Rohan Maddamsetti & Yi Yao & Teng Wang & Junheng Gao & Vincent T. Huang & Grayson S. Hamrick & Hye-In Son & Lingchong You, 2024. "Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Fujiwara, Masami, 2016. "Incorporating demographic diversity into food web models: Effects on community structure and dynamics," Ecological Modelling, Elsevier, vol. 322(C), pages 10-18.
    17. Kihyun Lee & Sebastien Raguideau & Kimmo Sirén & Francesco Asnicar & Fabio Cumbo & Falk Hildebrand & Nicola Segata & Chang-Jun Cha & Christopher Quince, 2023. "Population-level impacts of antibiotic usage on the human gut microbiome," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. John P. Marken & Richard M. Murray, 2023. "Addressable and adaptable intercellular communication via DNA messaging," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Becky Tang & James S. Clark & Peter P. Marra & Alan E. Gelfand, 2023. "Modeling Community Dynamics Through Environmental Effects, Species Interactions and Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 178-195, March.
    20. Tu, Chengyi & Luo, Jianhong & Fan, Ying & Pan, Xuwei, 2023. "Dimensionality reduction in stochastic complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45154-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.