IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26004-5.html
   My bibliography  Save this article

Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements

Author

Listed:
  • Suzanne Humphrey

    (University of Glasgow)

  • Alfred Fillol-Salom

    (University of Glasgow
    Imperial College London)

  • Nuria Quiles-Puchalt

    (University of Glasgow
    Imperial College London)

  • Rodrigo Ibarra-Chávez

    (University of Glasgow
    University of Copenhagen)

  • Andreas F. Haag

    (University of Glasgow)

  • John Chen

    (Yong Loo Lin School of Medicine, National University of Singapore)

  • José R. Penadés

    (University of Glasgow
    Imperial College London
    Universidad CEU Cardenal Herrera)

Abstract

It is commonly assumed that the horizontal transfer of most bacterial chromosomal genes is limited, in contrast to the frequent transfer observed for typical mobile genetic elements. However, this view has been recently challenged by the discovery of lateral transduction in Staphylococcus aureus, where temperate phages can drive the transfer of large chromosomal regions at extremely high frequencies. Here, we analyse previously published as well as new datasets to compare horizontal gene transfer rates mediated by different mechanisms in S. aureus and Salmonella enterica. We find that the horizontal transfer of core chromosomal genes via lateral transduction can be more efficient than the transfer of classical mobile genetic elements via conjugation or generalized transduction. These results raise questions about our definition of mobile genetic elements, and the potential roles played by lateral transduction in bacterial evolution.

Suggested Citation

  • Suzanne Humphrey & Alfred Fillol-Salom & Nuria Quiles-Puchalt & Rodrigo Ibarra-Chávez & Andreas F. Haag & John Chen & José R. Penadés, 2021. "Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26004-5
    DOI: 10.1038/s41467-021-26004-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26004-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26004-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alfred Fillol-Salom & Rodrigo Bacigalupe & Suzanne Humphrey & Yin Ning Chiang & John Chen & José R. Penadés, 2021. "Lateral transduction is inherent to the life cycle of the archetypical Salmonella phage P22," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Rene Niehus & Sara Mitri & Alexander G. Fletcher & Kevin R. Foster, 2015. "Migration and horizontal gene transfer divide microbial genomes into multiple niches," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James P. J. Hall, 2021. "Is the bacterial chromosome a mobile genetic element?," Nature Communications, Nature, vol. 12(1), pages 1-4, December.
    2. Alfred Fillol-Salom & Rodrigo Bacigalupe & Suzanne Humphrey & Yin Ning Chiang & John Chen & José R. Penadés, 2021. "Lateral transduction is inherent to the life cycle of the archetypical Salmonella phage P22," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klimenko, Alexandra I. & Matushkin, Yury G. & Kolchanov, Nikolay A. & Lashin, Sergey A., 2019. "Spatial heterogeneity promotes antagonistic evolutionary scenarios in microbial community explained by ecological stratification: a simulation study," Ecological Modelling, Elsevier, vol. 399(C), pages 66-76.
    2. Akshit Goyal, 2018. "Metabolic adaptations underlying genome flexibility in prokaryotes," PLOS Genetics, Public Library of Science, vol. 14(10), pages 1-15, October.
    3. Pekka Marttinen & William P Hanage, 2017. "Speciation trajectories in recombining bacterial species," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-15, July.
    4. Shiben Zhu & Juken Hong & Teng Wang, 2024. "Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Vit Piskovsky & Nuno M. Oliveira, 2023. "Bacterial motility can govern the dynamics of antibiotic resistance evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Cameron J. Reid & Max L. Cummins & Stefan Börjesson & Michael S. M. Brouwer & Henrik Hasman & Anette M. Hammerum & Louise Roer & Stefanie Hess & Thomas Berendonk & Kristina Nešporová & Marisa Haenni &, 2022. "A role for ColV plasmids in the evolution of pathogenic Escherichia coli ST58," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26004-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.