IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/0010071.html
   My bibliography  Save this article

Species Choice for Comparative Genomics: Being Greedy Works

Author

Listed:
  • Fabio Pardi
  • Nick Goldman

Abstract

Several projects investigating genetic function and evolution through sequencing and comparison of multiple genomes are now underway. These projects consume many resources, and appropriate planning should be devoted to choosing which species to sequence, potentially involving cooperation among different sequencing centres. A widely discussed criterion for species choice is the maximisation of evolutionary divergence. Our mathematical formalization of this problem surprisingly shows that the best long-term cooperative strategy coincides with the seemingly short-term “greedy” strategy of always choosing the next best single species. Other criteria influencing species choice, such as medical relevance or sequencing costs, can also be accommodated in our approach, suggesting our results' broad relevance in scientific policy decisions.Synopsis: What would happen if sequencing centres around the world were to choose genomes without consulting each other and without devising long-term strategies? When several parties are involved in decisions with interacting consequences, experience teaches that cooperation and planning are usually necessary to guarantee the best result. Similarly, in computer science, “greedy” algorithms—which construct solutions by iteratively taking the best immediate choice—are rarely the best option to solve a problem. The authors show, however, that in the context of choosing species for comparative genomics, cooperation and planning can be kept to a minimum without affecting the quality of the global result: a greedy algorithm applied to the problem of maximising the evolutionary divergence among species chosen from a known phylogeny is proven to guarantee optimal solutions.

Suggested Citation

  • Fabio Pardi & Nick Goldman, 2005. "Species Choice for Comparative Genomics: Being Greedy Works," PLOS Genetics, Public Library of Science, vol. 1(6), pages 1-1, December.
  • Handle: RePEc:plo:pgen00:0010071
    DOI: 10.1371/journal.pgen.0010071
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0010071
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.0010071&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.0010071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manolis Kellis & Nick Patterson & Matthew Endrizzi & Bruce Birren & Eric S. Lander, 2003. "Sequencing and comparison of yeast species to identify genes and regulatory elements," Nature, Nature, vol. 423(6937), pages 241-254, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Billionnet, Alain, 2013. "Mathematical optimization ideas for biodiversity conservation," European Journal of Operational Research, Elsevier, vol. 231(3), pages 514-534.
    2. Refael Hassin & R. Ravi & F. Sibel Salman, 2017. "Multiple facility location on a network with linear reliability order of edges," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 931-955, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Song & Hong Gu, 2014. "Discriminative Motif Discovery via Simulated Evolution and Random Under-Sampling," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
    2. Alexander Kawrykow & Gary Roumanis & Alfred Kam & Daniel Kwak & Clarence Leung & Chu Wu & Eleyine Zarour & Phylo players & Luis Sarmenta & Mathieu Blanchette & Jérôme Waldispühl, 2012. "Phylo: A Citizen Science Approach for Improving Multiple Sequence Alignment," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-9, March.
    3. Alessandro L. V. Coradini & Christopher Ne Ville & Zachary A. Krieger & Joshua Roemer & Cara Hull & Shawn Yang & Daniel T. Lusk & Ian M. Ehrenreich, 2023. "Building synthetic chromosomes from natural DNA," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Valerie Storms & Marleen Claeys & Aminael Sanchez & Bart De Moor & Annemieke Verstuyf & Kathleen Marchal, 2010. "The Effect of Orthology and Coregulation on Detecting Regulatory Motifs," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-11, February.
    5. Robert K Bradley & Adam Roberts & Michael Smoot & Sudeep Juvekar & Jaeyoung Do & Colin Dewey & Ian Holmes & Lior Pachter, 2009. "Fast Statistical Alignment," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-15, May.
    6. Rahul Siddharthan & Eric D Siggia & Erik van Nimwegen, 2005. "PhyloGibbs: A Gibbs Sampling Motif Finder That Incorporates Phylogeny," PLOS Computational Biology, Public Library of Science, vol. 1(7), pages 1-23, December.
    7. Harri Lähdesmäki & Alistair G Rust & Ilya Shmulevich, 2008. "Probabilistic Inference of Transcription Factor Binding from Multiple Data Sources," PLOS ONE, Public Library of Science, vol. 3(3), pages 1-24, March.
    8. Leelavati Narlikar & Raluca Gordân & Alexander J Hartemink, 2007. "A Nucleosome-Guided Map of Transcription Factor Binding Sites in Yeast," PLOS Computational Biology, Public Library of Science, vol. 3(11), pages 1-10, November.
    9. J Roman Arguello & Carolina Sellanes & Yann Ru Lou & Robert A Raguso, 2013. "Can Yeast (S. cerevisiae) Metabolic Volatiles Provide Polymorphic Signaling?," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-12, August.
    10. Krishna B. S. Swamy & Hsin-Yi Lee & Carmina Ladra & Chien-Fu Jeff Liu & Jung-Chi Chao & Yi-Yun Chen & Jun-Yi Leu, 2022. "Proteotoxicity caused by perturbed protein complexes underlies hybrid incompatibility in yeast," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Carla Bautista & Isabelle Gagnon-Arsenault & Mariia Utrobina & Anna Fijarczyk & Devin P. Bendixsen & Rike Stelkens & Christian R. Landry, 2024. "Hybrid adaptation is hampered by Haldane’s sieve," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Eilon Sharon & Shai Lubliner & Eran Segal, 2008. "A Feature-Based Approach to Modeling Protein–DNA Interactions," PLOS Computational Biology, Public Library of Science, vol. 4(8), pages 1-17, August.
    13. Siewert Elizabeth A & Kechris Katerina J, 2009. "Prediction of Motifs Based on a Repeated-Measures Model for Integrating Cross-Species Sequence and Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-36, September.
    14. Lit-Hsin Loo & Danai Laksameethanasan & Yi-Ling Tung, 2014. "Quantitative Protein Localization Signatures Reveal an Association between Spatial and Functional Divergences of Proteins," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-17, March.
    15. Christian L Barrett & Bernhard O Palsson, 2006. "Iterative Reconstruction of Transcriptional Regulatory Networks: An Algorithmic Approach," PLOS Computational Biology, Public Library of Science, vol. 2(5), pages 1-10, May.
    16. Kemal Sonmez & Naunihal T Zaveri & Ilan A Kerman & Sharon Burke & Charles R Neal & Xinmin Xie & Stanley J Watson & Lawrence Toll, 2009. "Evolutionary Sequence Modeling for Discovery of Peptide Hormones," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-12, January.
    17. Kenzie D MacIsaac & Ernest Fraenkel, 2006. "Practical Strategies for Discovering Regulatory DNA Sequence Motifs," PLOS Computational Biology, Public Library of Science, vol. 2(4), pages 1-10, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:0010071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.