IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v8y2009i1n36.html
   My bibliography  Save this article

Prediction of Motifs Based on a Repeated-Measures Model for Integrating Cross-Species Sequence and Expression Data

Author

Listed:
  • Siewert Elizabeth A

    (University of Colorado, Denver)

  • Kechris Katerina J

    (University of Colorado, Denver)

Abstract

De novo identification of transcription factor binding sites (TFBS) is a challenging computational problem because TFBSs are relatively short sequences buried in long genomic regions. Earlier methods incorporated genome-wide expression data and promoter sequences into a linear-model framework, regressing expression on counts of putative TFBSs in promoters for a single species. More recently, it has been shown that examining sequence data across multiple species improves the prediction of TFBSs. In this work, we describe an extension of the single-species, linear-model framework for the analysis of paired cross-species sequence and expression data. A repeated measures model for gene-expression measurements across species is used, accounting for phylogenetic relationships among species through the error covariance structure. This multiple-species algorithm is applied to a data set of four yeast species grown under heat-shock conditions and comparisons are made to the single species algorithm. Using evaluations based on transcription factor binding strength and an independent source of expression data, we find the multiple species results show an improvement in the prediction of TFBS.

Suggested Citation

  • Siewert Elizabeth A & Kechris Katerina J, 2009. "Prediction of Motifs Based on a Repeated-Measures Model for Integrating Cross-Species Sequence and Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-36, September.
  • Handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:36
    DOI: 10.2202/1544-6115.1464
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1464
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rahul Siddharthan & Eric D Siggia & Erik van Nimwegen, 2005. "PhyloGibbs: A Gibbs Sampling Motif Finder That Incorporates Phylogeny," PLOS Computational Biology, Public Library of Science, vol. 1(7), pages 1-23, December.
    2. Sunduz Keles & Mark van der Laan & Chris Vulpe, 2004. "Regulatory Motif Finding by Logic Regression," U.C. Berkeley Division of Biostatistics Working Paper Series 1145, Berkeley Electronic Press.
    3. Scott A. Rifkin & David Houle & Junhyong Kim & Kevin P. White, 2005. "A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression," Nature, Nature, vol. 438(7065), pages 220-223, November.
    4. Manolis Kellis & Nick Patterson & Matthew Endrizzi & Bruce Birren & Eric S. Lander, 2003. "Sequencing and comparison of yeast species to identify genes and regulatory elements," Nature, Nature, vol. 423(6937), pages 241-254, May.
    5. Antonis Rokas & Barry L. Williams & Nicole King & Sean B. Carroll, 2003. "Genome-scale approaches to resolving incongruence in molecular phylogenies," Nature, Nature, vol. 425(6960), pages 798-804, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tuglus Catherine & van der Laan Mark J., 2011. "Repeated Measures Semiparametric Regression Using Targeted Maximum Likelihood Methodology with Application to Transcription Factor Activity Discovery," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-31, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahul Siddharthan & Eric D Siggia & Erik van Nimwegen, 2005. "PhyloGibbs: A Gibbs Sampling Motif Finder That Incorporates Phylogeny," PLOS Computational Biology, Public Library of Science, vol. 1(7), pages 1-23, December.
    2. Harri Lähdesmäki & Alistair G Rust & Ilya Shmulevich, 2008. "Probabilistic Inference of Transcription Factor Binding from Multiple Data Sources," PLOS ONE, Public Library of Science, vol. 3(3), pages 1-24, March.
    3. Kenzie D MacIsaac & Ernest Fraenkel, 2006. "Practical Strategies for Discovering Regulatory DNA Sequence Motifs," PLOS Computational Biology, Public Library of Science, vol. 2(4), pages 1-10, April.
    4. Wang Yuancheng & Degnan James H, 2011. "Performance of Matrix Representation with Parsimony for Inferring Species from Gene Trees," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-39, May.
    5. Ivan Dotu & Scott I Adamson & Benjamin Coleman & Cyril Fournier & Emma Ricart-Altimiras & Eduardo Eyras & Jeffrey H Chuang, 2018. "SARNAclust: Semi-automatic detection of RNA protein binding motifs from immunoprecipitation data," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-25, March.
    6. Tao Song & Hong Gu, 2014. "Discriminative Motif Discovery via Simulated Evolution and Random Under-Sampling," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
    7. Tuglus Catherine & van der Laan Mark J., 2011. "Repeated Measures Semiparametric Regression Using Targeted Maximum Likelihood Methodology with Application to Transcription Factor Activity Discovery," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-31, January.
    8. Alexander Kawrykow & Gary Roumanis & Alfred Kam & Daniel Kwak & Clarence Leung & Chu Wu & Eleyine Zarour & Phylo players & Luis Sarmenta & Mathieu Blanchette & Jérôme Waldispühl, 2012. "Phylo: A Citizen Science Approach for Improving Multiple Sequence Alignment," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-9, March.
    9. Martín Espariz & Federico A Zuljan & Luis Esteban & Christian Magni, 2016. "Taxonomic Identity Resolution of Highly Phylogenetically Related Strains and Selection of Phylogenetic Markers by Using Genome-Scale Methods: The Bacillus pumilus Group Case," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
    10. Alessandro L. V. Coradini & Christopher Ne Ville & Zachary A. Krieger & Joshua Roemer & Cara Hull & Shawn Yang & Daniel T. Lusk & Ian M. Ehrenreich, 2023. "Building synthetic chromosomes from natural DNA," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Valerie Storms & Marleen Claeys & Aminael Sanchez & Bart De Moor & Annemieke Verstuyf & Kathleen Marchal, 2010. "The Effect of Orthology and Coregulation on Detecting Regulatory Motifs," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-11, February.
    12. Robert K Bradley & Adam Roberts & Michael Smoot & Sudeep Juvekar & Jaeyoung Do & Colin Dewey & Ian Holmes & Lior Pachter, 2009. "Fast Statistical Alignment," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-15, May.
    13. Jia Lu & Xiaoyi Cao & Sheng Zhong, 2018. "A likelihood approach to testing hypotheses on the co-evolution of epigenome and genome," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-28, December.
    14. Leelavati Narlikar & Raluca Gordân & Alexander J Hartemink, 2007. "A Nucleosome-Guided Map of Transcription Factor Binding Sites in Yeast," PLOS Computational Biology, Public Library of Science, vol. 3(11), pages 1-10, November.
    15. Roch, Sebastien & Steel, Mike, 2015. "Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent," Theoretical Population Biology, Elsevier, vol. 100(C), pages 56-62.
    16. Saeed Omidi & Mihaela Zavolan & Mikhail Pachkov & Jeremie Breda & Severin Berger & Erik van Nimwegen, 2017. "Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-22, July.
    17. Aqil M Azmi & Abdulrakeeb Al-Ssulami, 2014. "Encoded Expansion: An Efficient Algorithm to Discover Identical String Motifs," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-9, May.
    18. J Roman Arguello & Carolina Sellanes & Yann Ru Lou & Robert A Raguso, 2013. "Can Yeast (S. cerevisiae) Metabolic Volatiles Provide Polymorphic Signaling?," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-12, August.
    19. Gaotian Zhang & Nicole M. Roberto & Daehan Lee & Steffen R. Hahnel & Erik C. Andersen, 2022. "The impact of species-wide gene expression variation on Caenorhabditis elegans complex traits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Fabio Pardi & Nick Goldman, 2005. "Species Choice for Comparative Genomics: Being Greedy Works," PLOS Genetics, Public Library of Science, vol. 1(6), pages 1-1, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.