IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003504.html
   My bibliography  Save this article

Quantitative Protein Localization Signatures Reveal an Association between Spatial and Functional Divergences of Proteins

Author

Listed:
  • Lit-Hsin Loo
  • Danai Laksameethanasan
  • Yi-Ling Tung

Abstract

Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein functions and how these functions were acquired in cells from different organisms or species. A public web interface of PLAST is available at http://plast.bii.a-star.edu.sg.Author Summary: Proteins are fundamental building blocks of cells. They perform a variety of biological functions, many of which are essential to the vitality and normal functioning of cells. Proteins have to be located at the appropriate regions inside a cell to perform their functions. Therefore, when proteins change their locations, they may acquire new or different functions. However, the relationships between the locations and functions of proteins are difficult to analyze because protein locations are often represented in distinct and manually-defined categories of subcellular regions. Many proteins have complex or subtle differences in their localization patterns that can be hardly represented by these categories. Here, we present an automated analysis tool for generating quantitative signatures of protein localization patterns without requiring manual or automated assignments of proteins into distinct categories. We show that our tool can identify proteins located at the same subcellular regions more accurately than existing categorization-based methods. Our tool allows comprehensive and more accurate studies of the relationships between protein localizations and functions. By knowing where proteins are located and how their locations were changed, we may discover their functions and better understand how they acquire these functions.

Suggested Citation

  • Lit-Hsin Loo & Danai Laksameethanasan & Yi-Ling Tung, 2014. "Quantitative Protein Localization Signatures Reveal an Association between Spatial and Functional Divergences of Proteins," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-17, March.
  • Handle: RePEc:plo:pcbi00:1003504
    DOI: 10.1371/journal.pcbi.1003504
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003504
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003504&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ilan Wapinski & Avi Pfeffer & Nir Friedman & Aviv Regev, 2007. "Natural history and evolutionary principles of gene duplication in fungi," Nature, Nature, vol. 449(7158), pages 54-61, September.
    2. Kenneth H. Wolfe & Denis C. Shields, 1997. "Molecular evidence for an ancient duplication of the entire yeast genome," Nature, Nature, vol. 387(6634), pages 708-713, June.
    3. Manolis Kellis & Bruce W. Birren & Eric S. Lander, 2004. "Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae," Nature, Nature, vol. 428(6983), pages 617-624, April.
    4. Manolis Kellis & Nick Patterson & Matthew Endrizzi & Bruce Birren & Eric S. Lander, 2003. "Sequencing and comparison of yeast species to identify genes and regulatory elements," Nature, Nature, vol. 423(6937), pages 241-254, May.
    5. Johannes Freitag & Julia Ast & Michael Bölker, 2012. "Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi," Nature, Nature, vol. 485(7399), pages 522-525, May.
    6. Louis-François Handfield & Yolanda T Chong & Jibril Simmons & Brenda J Andrews & Alan M Moses, 2013. "Unsupervised Clustering of Subcellular Protein Expression Patterns in High-Throughput Microscopy Images Reveals Protein Complexes and Functional Relationships between Proteins," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-19, June.
    7. John R. S. Newman & Sina Ghaemmaghami & Jan Ihmels & David K. Breslow & Matthew Noble & Joseph L. DeRisi & Jonathan S. Weissman, 2006. "Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise," Nature, Nature, vol. 441(7095), pages 840-846, June.
    8. Won-Ki Huh & James V. Falvo & Luke C. Gerke & Adam S. Carroll & Russell W. Howson & Jonathan S. Weissman & Erin K. O'Shea, 2003. "Global analysis of protein localization in budding yeast," Nature, Nature, vol. 425(6959), pages 686-691, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex N Nguyen Ba & Bob Strome & Jun Jie Hua & Jonathan Desmond & Isabelle Gagnon-Arsenault & Eric L Weiss & Christian R Landry & Alan M Moses, 2014. "Detecting Functional Divergence after Gene Duplication through Evolutionary Changes in Posttranslational Regulatory Sequences," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-15, December.
    2. Louis-François Handfield & Yolanda T Chong & Jibril Simmons & Brenda J Andrews & Alan M Moses, 2013. "Unsupervised Clustering of Subcellular Protein Expression Patterns in High-Throughput Microscopy Images Reveals Protein Complexes and Functional Relationships between Proteins," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-19, June.
    3. Oliver M Crook & Aikaterini Geladaki & Daniel J H Nightingale & Owen L Vennard & Kathryn S Lilley & Laurent Gatto & Paul D W Kirk, 2020. "A semi-supervised Bayesian approach for simultaneous protein sub-cellular localisation assignment and novelty detection," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-21, November.
    4. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    5. Eduardo Vieira de Souza & Angie L. Bookout & Christopher A. Barnes & Brendan Miller & Pablo Machado & Luiz A. Basso & Cristiano V. Bizarro & Alan Saghatelian, 2024. "Rp3: Ribosome profiling-assisted proteogenomics improves coverage and confidence during microprotein discovery," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Julia P. Schessner & Vincent Albrecht & Alexandra K. Davies & Pavel Sinitcyn & Georg H. H. Borner, 2023. "Deep and fast label-free Dynamic Organellar Mapping," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Arthur Fischbach & Angela Johns & Kara L. Schneider & Xinxin Hao & Peter Tessarz & Thomas Nyström, 2023. "Artificial Hsp104-mediated systems for re-localizing protein aggregates," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Ci Fu & Xiang Zhang & Amanda O. Veri & Kali R. Iyer & Emma Lash & Alice Xue & Huijuan Yan & Nicole M. Revie & Cassandra Wong & Zhen-Yuan Lin & Elizabeth J. Polvi & Sean D. Liston & Benjamin VanderSlui, 2021. "Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    9. Tao Song & Hong Gu, 2014. "Discriminative Motif Discovery via Simulated Evolution and Random Under-Sampling," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
    10. Lee, Julian, 2023. "Poisson distributions in stochastic dynamics of gene expression: What events do they count?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    11. Colizza, Vittoria & Flammini, Alessandro & Maritan, Amos & Vespignani, Alessandro, 2005. "Characterization and modeling of protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 1-27.
    12. Stuart Aitken & Marie-Cécile Robert & Ross D Alexander & Igor Goryanin & Edouard Bertrand & Jean D Beggs, 2010. "Processivity and Coupling in Messenger RNA Transcription," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-12, January.
    13. Maria Luisa Romero Romero & Jonas Poehls & Anastasiia Kirilenko & Doris Richter & Tobias Jumel & Anna Shevchenko & Agnes Toth-Petroczy, 2024. "Environment modulates protein heterogeneity through transcriptional and translational stop codon readthrough," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Maya Dinur-Mills & Merav Tal & Ophry Pines, 2008. "Dual Targeted Mitochondrial Proteins Are Characterized by Lower MTS Parameters and Total Net Charge," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-8, May.
    15. Alexander Kawrykow & Gary Roumanis & Alfred Kam & Daniel Kwak & Clarence Leung & Chu Wu & Eleyine Zarour & Phylo players & Luis Sarmenta & Mathieu Blanchette & Jérôme Waldispühl, 2012. "Phylo: A Citizen Science Approach for Improving Multiple Sequence Alignment," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-9, March.
    16. Alessandro L. V. Coradini & Christopher Ne Ville & Zachary A. Krieger & Joshua Roemer & Cara Hull & Shawn Yang & Daniel T. Lusk & Ian M. Ehrenreich, 2023. "Building synthetic chromosomes from natural DNA," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Ming Ni & Antoine L Decrulle & Fanette Fontaine & Alice Demarez & Francois Taddei & Ariel B Lindner, 2012. "Pre-Disposition and Epigenetics Govern Variation in Bacterial Survival upon Stress," PLOS Genetics, Public Library of Science, vol. 8(12), pages 1-11, December.
    18. Najme Khorasani & Mehdi Sadeghi & Abbas Nowzari-Dalini, 2020. "A computational model of stem cell molecular mechanism to maintain tissue homeostasis," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-25, July.
    19. Valerie Storms & Marleen Claeys & Aminael Sanchez & Bart De Moor & Annemieke Verstuyf & Kathleen Marchal, 2010. "The Effect of Orthology and Coregulation on Detecting Regulatory Motifs," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-11, February.
    20. Robert K Bradley & Adam Roberts & Michael Smoot & Sudeep Juvekar & Jaeyoung Do & Colin Dewey & Ian Holmes & Lior Pachter, 2009. "Fast Statistical Alignment," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-15, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.