IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009517.html
   My bibliography  Save this article

A confirmation bias in perceptual decision-making due to hierarchical approximate inference

Author

Listed:
  • Richard D Lange
  • Ankani Chattoraj
  • Jeffrey M Beck
  • Jacob L Yates
  • Ralf M Haefner

Abstract

Making good decisions requires updating beliefs according to new evidence. This is a dynamical process that is prone to biases: in some cases, beliefs become entrenched and resistant to new evidence (leading to primacy effects), while in other cases, beliefs fade over time and rely primarily on later evidence (leading to recency effects). How and why either type of bias dominates in a given context is an important open question. Here, we study this question in classic perceptual decision-making tasks, where, puzzlingly, previous empirical studies differ in the kinds of biases they observe, ranging from primacy to recency, despite seemingly equivalent tasks. We present a new model, based on hierarchical approximate inference and derived from normative principles, that not only explains both primacy and recency effects in existing studies, but also predicts how the type of bias should depend on the statistics of stimuli in a given task. We verify this prediction in a novel visual discrimination task with human observers, finding that each observer’s temporal bias changed as the result of changing the key stimulus statistics identified by our model. The key dynamic that leads to a primacy bias in our model is an overweighting of new sensory information that agrees with the observer’s existing belief—a type of ‘confirmation bias’. By fitting an extended drift-diffusion model to our data we rule out an alternative explanation for primacy effects due to bounded integration. Taken together, our results resolve a major discrepancy among existing perceptual decision-making studies, and suggest that a key source of bias in human decision-making is approximate hierarchical inference.Author summary: When humans and animals accumulate evidence over time, they are often biased. Identifying the mechanisms underlying these biases can lead to new insights into principles of neural computation. The confirmation bias, in which new evidence is given more weight when it agrees with existing beliefs, is a ubiquitous yet poorly understood example of such biases. Here we report that a confirmation bias arises even during perceptual decision-making, and propose an approximate hierarchical inference model as the underlying mechanism. Our model correctly predicts for what stimuli and tasks this bias will be strong, and when it will be weak, a critical prediction that we confirm using old and new data. A quantitative model comparison clearly favors our model over a key alternative: integration to bound. The key dynamic driving the confirmation bias in our model is an interaction between inferences on different timescales, a common scenario in decision-making more generally.

Suggested Citation

  • Richard D Lange & Ankani Chattoraj & Jeffrey M Beck & Jacob L Yates & Ralf M Haefner, 2021. "A confirmation bias in perceptual decision-making due to hierarchical approximate inference," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-30, November.
  • Handle: RePEc:plo:pcbi00:1009517
    DOI: 10.1371/journal.pcbi.1009517
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009517
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009517&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Niklas Wilming & Peter R. Murphy & Florent Meyniel & Tobias H. Donner, 2020. "Large-scale dynamics of perceptual decision information across human cortex," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Philipp Schustek & Rubén Moreno-Bote, 2018. "Instance-based generalization for human judgments about uncertainty," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-27, June.
    3. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    4. Hendrikje Nienborg & Bruce G. Cumming, 2009. "Decision-related activity in sensory neurons reflects more than a neuron’s causal effect," Nature, Nature, vol. 459(7243), pages 89-92, May.
    5. Zohar Z Bronfman & Noam Brezis & Marius Usher, 2016. "Non-monotonic Temporal-Weighting Indicates a Dynamically Modulated Evidence-Integration Mechanism," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-21, February.
    6. A. Emin Orhan & Wei Ji Ma, 2017. "Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    7. Waitsang Keung & Todd A. Hagen & Robert C. Wilson, 2020. "A divisive model of evidence accumulation explains uneven weighting of evidence over time," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    8. Lars Buesing & Johannes Bill & Bernhard Nessler & Wolfgang Maass, 2011. "Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-22, November.
    9. Genís Prat-Ortega & Klaus Wimmer & Alex Roxin & Jaime Rocha, 2021. "Flexible categorization in perceptual decision making," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    10. Klaus Wimmer & Albert Compte & Alex Roxin & Diogo Peixoto & Alfonso Renart & Jaime de la Rocha, 2015. "Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT," Nature Communications, Nature, vol. 6(1), pages 1-13, May.
    11. Max Rollwage & Alisa Loosen & Tobias U. Hauser & Rani Moran & Raymond J. Dolan & Stephen M. Fleming, 2020. "Confidence drives a neural confirmation bias," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    12. Alex T. Piet & Ahmed El Hady & Carlos D. Brody, 2018. "Rats adopt the optimal timescale for evidence integration in a dynamic environment," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaushik J Lakshminarasimhan & Alexandre Pouget & Gregory C DeAngelis & Dora E Angelaki & Xaq Pitkow, 2018. "Inferring decoding strategies for multiple correlated neural populations," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-40, September.
    2. Andrew M. Clark & David C. Bradley, 2022. "A neural correlate of perceptual segmentation in macaque middle temporal cortical area," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. J. Tyler Boyd-Meredith & Alex T. Piet & Emily Jane Dennis & Ahmed El Hady & Carlos D. Brody, 2022. "Stable choice coding in rat frontal orienting fields across model-predicted changes of mind," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Jingwei Sun & Jian Li & Hang Zhang, 2019. "Human representation of multimodal distributions as clusters of samples," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-29, May.
    5. Lluís Hernández-Navarro & Ainhoa Hermoso-Mendizabal & Daniel Duque & Jaime de la Rocha & Alexandre Hyafil, 2021. "Proactive and reactive accumulation-to-bound processes compete during perceptual decisions," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    7. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    8. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    9. Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," Papers 2012.14503, arXiv.org.
    10. van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
    11. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    12. Cattaneo, Cristina & Grieco, Daniela, 2021. "Turning opposition into support to immigration: The role of narratives," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 785-801.
    13. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    14. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    15. Gruener, Sven, 2019. "An empirical study on Internet-based false news stories: experiences, problem awareness, and responsibilities," SocArXiv xbez9, Center for Open Science.
    16. Deniz Aksoy & David Carlson, 2022. "Electoral support and militants’ targeting strategies," Journal of Peace Research, Peace Research Institute Oslo, vol. 59(2), pages 229-241, March.
    17. Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
    18. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    19. D. Fouskakis & G. Petrakos & I. Rotous, 2020. "A Bayesian longitudinal model for quantifying students’ preferences regarding teaching quality indicators," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 255-270, August.
    20. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.