IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7177.html
   My bibliography  Save this article

Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT

Author

Listed:
  • Klaus Wimmer

    (Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS))

  • Albert Compte

    (Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS))

  • Alex Roxin

    (Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)
    Centre de Recerca Matemàtica (CRM), Campus de Bellaterra)

  • Diogo Peixoto

    (Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown
    Stanford University)

  • Alfonso Renart

    (Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown)

  • Jaime de la Rocha

    (Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS))

Abstract

Neuronal variability in sensory cortex predicts perceptual decisions. This relationship, termed choice probability (CP), can arise from sensory variability biasing behaviour and from top-down signals reflecting behaviour. To investigate the interaction of these mechanisms during the decision-making process, we use a hierarchical network model composed of reciprocally connected sensory and integration circuits. Consistent with monkey behaviour in a fixed-duration motion discrimination task, the model integrates sensory evidence transiently, giving rise to a decaying bottom-up CP component. However, the dynamics of the hierarchical loop recruits a concurrently rising top-down component, resulting in sustained CP. We compute the CP time-course of neurons in the medial temporal area (MT) and find an early transient component and a separate late contribution reflecting decision build-up. The stability of individual CPs and the dynamics of noise correlations further support this decomposition. Our model provides a unified understanding of the circuit dynamics linking neural and behavioural variability.

Suggested Citation

  • Klaus Wimmer & Albert Compte & Alex Roxin & Diogo Peixoto & Alfonso Renart & Jaime de la Rocha, 2015. "Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT," Nature Communications, Nature, vol. 6(1), pages 1-13, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7177
    DOI: 10.1038/ncomms7177
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7177
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Audrey J Sederberg & Aurélie Pala & He J V Zheng & Biyu J He & Garrett B Stanley, 2019. "State-aware detection of sensory stimuli in the cortex of the awake mouse," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-24, May.
    2. Kaushik J Lakshminarasimhan & Alexandre Pouget & Gregory C DeAngelis & Dora E Angelaki & Xaq Pitkow, 2018. "Inferring decoding strategies for multiple correlated neural populations," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-40, September.
    3. Richard D Lange & Ankani Chattoraj & Jeffrey M Beck & Jacob L Yates & Ralf M Haefner, 2021. "A confirmation bias in perceptual decision-making due to hierarchical approximate inference," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-30, November.
    4. Andrew M. Clark & David C. Bradley, 2022. "A neural correlate of perceptual segmentation in macaque middle temporal cortical area," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Christopher Ebsch & Robert Rosenbaum, 2018. "Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-28, March.
    6. Lluís Hernández-Navarro & Ainhoa Hermoso-Mendizabal & Daniel Duque & Jaime de la Rocha & Alexandre Hyafil, 2021. "Proactive and reactive accumulation-to-bound processes compete during perceptual decisions," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.