IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009119.html
   My bibliography  Save this article

De novo mutational signature discovery in tumor genomes using SparseSignatures

Author

Listed:
  • Avantika Lal
  • Keli Liu
  • Robert Tibshirani
  • Arend Sidow
  • Daniele Ramazzotti

Abstract

Cancer is the result of mutagenic processes that can be inferred from tumor genomes by analyzing rate spectra of point mutations, or “mutational signatures”. Here we present SparseSignatures, a novel framework to extract signatures from somatic point mutation data. Our approach incorporates a user-specified background signature, employs regularization to reduce noise in non-background signatures, uses cross-validation to identify the number of signatures, and is scalable to large datasets. We show that SparseSignatures outperforms current state-of-the-art methods on simulated data using a variety of standard metrics. We then apply SparseSignatures to whole genome sequences of pancreatic and breast tumors, discovering well-differentiated signatures that are linked to known mutagenic mechanisms and are strongly associated with patient clinical features.Author summary: Cancer is a genetic disease, occurring as a result of mutagenic processes causing DNA somatic mutations in genes controlling cellular growth and division. These somatic mutations arise from processes such as defective DNA repair and environmental mutagens, which massively increase the rate of somatic variants. As a result, due to the specificity of molecular lesions caused by such processes, and the specific repair mechanisms deployed by the cell to mitigate the damage, mutagenic processes generate characteristic point mutation rate spectra which are called mutational signatures. These signatures can indicate which mutagenic processes are active in a tumor, reveal biological differences between cancer subtypes, and may be useful markers for therapeutic response. Here, we develop SparseSignatures, a novel framework for mutational signature discovery capable of both identifying the active signatures in a dataset of point mutations and calculating their exposure values, i.e., the number of mutations originating from each signature in each patient. We show that our approach outperforms current state-of-the-art methods on simulated data using a variety of standard metrics and then apply SparseSignatures to whole genome sequences of pancreatic and breast tumors, discovering well-differentiated signatures that are linked to known mutagenic mechanisms.

Suggested Citation

  • Avantika Lal & Keli Liu & Robert Tibshirani & Arend Sidow & Daniele Ramazzotti, 2021. "De novo mutational signature discovery in tumor genomes using SparseSignatures," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-24, June.
  • Handle: RePEc:plo:pcbi00:1009119
    DOI: 10.1371/journal.pcbi.1009119
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009119
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009119&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    2. Daniele Ramazzotti & Avantika Lal & Bo Wang & Serafim Batzoglou & Arend Sidow, 2018. "Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingjie Chen & Daniele Ramazzotti & Timon Heide & Inmaculada Spiteri & Javier Fernandez-Mateos & Chela James & Luca Magnani & Trevor A. Graham & Andrea Sottoriva, 2023. "Contribution of pks+ E. coli mutations to colorectal carcinogenesis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    3. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    4. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    5. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    6. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    7. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    8. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    9. Perrot-Dockès Marie & Lévy-Leduc Céline & Chiquet Julien & Sansonnet Laure & Brégère Margaux & Étienne Marie-Pierre & Robin Stéphane & Genta-Jouve Grégory, 2018. "A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-14, October.
    10. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    11. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    12. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    13. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    14. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    15. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    17. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    18. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    19. Brian Quistorff & Gentry Johnson, 2020. "Machine Learning for Experimental Design: Methods for Improved Blocking," Papers 2010.15966, arXiv.org.
    20. Heng Chen & Daniel F. Heitjan, 2022. "Analysis of local sensitivity to nonignorability with missing outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(4), pages 1342-1352, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.